
Technical Report
RAL-TR-97-058

Implicitly Restarted Arnoldi Methods and
EigenvaIues of the Discretized Navier Stokes
Equations

R B Lehoucq and J A Scott

October I997

COUNCIL FOR THE CENTRAL LABORATORY OF THE RESEARCH COUNCILS

0 Council for the Central Laboratory of the Research Councils 1997

Enquiries about copyright, reproduction and requests for
additional copies of this report should be addressed to:

The Central Laboratory of the Research Councils
Library and Information Services
Rutherford Appleton Laboratory
Chilton
Didcot
Oxfordshire
OX1 1 OQX
Tel: 01 235 445384
E-mail library@rl.ac.uk

Fax: 01 235 446403

ISSN 1358-6254

Neither the Council nor the Laboratory accept any responsibility for loss or
damage arising from the use of information contained in any of their
reports o r in any communication about their tests or investigations.

RAL- TR- 9 7- 05 8

Implicitly restarted Arnoldi methods and
eigenvalues of the discretized Navier Stokes

equations.

R. B. Lehoucq' and J. A. Scott2

Abstract

We are concerned with finding a few eigenvalues of the large sparse
nonsymmetric generalized eigenvaliie problem Az = XBx that arises
in stability studies of incompressible fluid flow. The matrices have a
block structure that is typical of mixed finite-element discretixations
for siich problems. We examine the use of shift-invert and Cayley trans-
formations in conjunction with the implicitly restarted Ariioldi method
along with iising a semi-inner product induced by B and purification
techniques. Numerical results are presented for some model problems
arising from the ENTWIFE finite-element package. Our conclusion is
that, with careful implementation, implicitly restarted Arnoldi meth-
ods are reliable for linear stability analysis.

AMS classification: Primary 65F15; Secondary 65F50

Key Words: eigenvalues, sparse nonsymmetric matrices, Arnoldi's
method.

Current reports available by anonymous ftp from matisa. cc . rl . ac .I& (internet
130.246.8.22) in the directory pub/reports.

' Sandia National Laboratories. MS 1110, P.O.Box 5800 Albiiqiierqne, NM 87185-
1110, USA. rlehoucqOcs. sandia.gov.

Compiiting and Information Systems Department, Rutherford Appleton Labora-
tory, Chilton, Didcot, Oxon OX11 0QX. England. sctOletterbox .rl. ac .uk.

October 17, 1997.

CONTENTS 1

Contents

1 Introduction 1

2 The implicitly restarted Arnoldi method 3

3 Introduction to matrix transformations 5

4 Shift-invert techniques 5
4.1 The shift-invert transformation , . . 6
4.2 Shift-invert theory for the discretized Navier Stokes equations 6

5 Cayley transformations 9
5.1
5.2

Generalized Cayley transformation ,
Modified Cayley transformation

9
10

6 Cayley transform Arnoldi 12
6.1
6.2
6.3
6.4

Algorithm outline , .
Convergence testing . , . .
Missing eigenvalues . . , , ,
Spurious eigenvalues .

12
14
15
16

7 The linear equation solver 17

8 The software package ARPACK 20
8.1 Introduction to ARPACK . 20
8.2 Modifications to ARPACK 21

9 Numerical experiments 22
9.1 Problem1 . 23
9.2 Problem 2 . , . 31
9.3 P r o b l e m 3 . . . , , , , . . , . , , . . , . , . . . , 32
9.4 35 Balancing theory and numerical experiments

10 Conclusions and future directions 37

11 Acknowledgements 38

1 INTRODUCTION 1

1 Introduction

Mixed finite-element discretizations of time-dependent equations modelling
incompressible fluid flow problems typically produce nonlinear finite
dimensional systems of the form

Mu + H(u)u + Lu + Cp = b,
(1.1)

CTu = c,

where U E R", p E Rm with n > m. M and L are symmetric positive
definite n x n matrices, H(u) is a nonsymmetric n x n matrix, and C is an
n x m matrix of full rank. Linearized stability analysis of (1.1) leads to the
problem of finding a few eigenvalues of the generalized eigenvalue problem

Ax = XBx (1.2)

where

In the case of the so-called primative variable formulation of the discretized
Navier Stokes equations for incompressible flow, U and p denote the velocity
and pressure degrees of freedom, respectively (see, for example, Cliffe,
Garratt and Spence, 1993). The matrix M is the mass matrix and K is
nonsymmetric because of the linearization of the convection term. The
matrices K , C, and M are all sparse and in real applications are very large.

For stability analysis, the interest lies in computing the eigenvalues of
smallest real part (the left-most eigenvalues) (Georgescu, 1985 and Sattinger,
1973). Of special interest is the case when the eigenvalues of smallest real
part are complex, because algorithms for the detection of Hopf bifurcations
in parameter dependent systems can be developed from knowledge of these
eigenvalues. A complication that arises is that the eigenvalue problem can

have infinite eigenvalues, corresponding to eigenvectors of the form

(see Malkus, 1981, Ericsson, 1986 and Cliffe, Garratt and Spence, 1994).
A standard approach for finding the left-most eigenvalues of the

discretized Navier Stokes equations is to use a rational transformation
such as a shift-invert or a Cayley transformation, and then to apply

(3

1 INTRODUCTION 2

an iterative technique, for example, subspace iteration or Arnoldi’s
method, to the transformed problem. Traditionally, subspace iteration
has been the method of choice because Arnoldi’s method was perceived
as being less reliable. Experiments reported by Garratt (1991) found that
Arnoldi’s method sometimes missed the sought-after left-most eigenvalue
and, because reliability is more important than efficiency in linear stability
analysis, Garratt favoured subspace iteration. However, the recent work
of Meerbergen and Spence (1997) demonstrates, in theory, that the implicitly
restarted Arnoldi method of Sorensen (1992), combined with shift-invert
transformations, can be successfully employed to compute the left-most
eigenvalues of generalized eigenvalue problems with the block structure (1.3).
In this report, we look at using the package ARPACK of Lehoucq, Sorensen
and Yang (1998), which implements the implicitly restarted Arnoldi method,
to compute eigenvalues of the discretized Navier Stokes equations. Our
results show that implicitly restarted Arnoldi methods can be used reliably.

The outline of this report is as follows. In Sections 2 and 3 we give
brief introductions to the implicitly restarted Arnoldi method and matrix
transformations for generalized eigenvalues. We then look at shift-invert
and Cayley transformations in Sections 4 and 5 . We discuss the generalized
Cayley and modified Cayley transformations; the latter was introduced by
Cliffe et al. (1993) as a way of mapping the unwanted infinite eigenvalues
to a part of the spectrum where they are unlikely to be computed by the
eigensolver. The algorithm which we propose for computing eigenvalues of
the discretized Navier Stokes equations is outlined in Section 6. In Section 7,
we explain our choice of linear equation solver. Section 8 introduces the
software package ARPACK, that implements the implicitly restarted Arnoldi
method. We also highlight the modifications to ARPACK that allowed us to
use Cayley transformations. Numerical results are presented in Section 9.
Finally, we make some comments on our findings and on possible future
work.

Throughout this report, the finite eigenvalues of the generalized
eigenvalue problem (1.2) are denoted by A, (i = 1,. . . , n - m) and it is
assumed that they are ordered by increasing real parts i.e. i > j =$ Re(Aj) 2
Re(Aj). The standard inner product of two vectors x and y is x H y where
xH is the complex conjugate transpose of x (if z is real then xH is equal to
zT). The Euclidean norm of a vector x is defined to be IIxl12 = &%. The
B semi-inner product of two vectors x and y is z H B y and induces the B
semi-norm 11x1(~ = a. The use of 11x11 implies that either the standard
or B semi-norm may be used.

2 THE IMPLICITLY RESTARTED ARNOLDI METHOD 3

2 The implicitly restarted Arnoldi method

A relatively recent variant of Arnoldi's method is that developed by Sorensen
(1992) as a more efficient and numerically stable way to implement
restarting. The scheme is called implicit because the starting vector is
updated by combining the implicitly shifted QR algorithm with an Arnoldi
reduction to obtain a truncated form of the implicitly shifted Q R iteration.
One of the benefits of an implicitly restarted Arnoldi method is that it avoids
the need to restart the Arnoldi reduction from scratch and thus fixes storage
requirements.

Consider an Arnoldi reduction of length T of a matrix A

AV, = V,Hr + fie:, (2.1)

where the n x T matrix V, has orthogonal columns, VrHfr = 0, and Hr is
an T x T upper Hessenberg matrix. The columns of V, are an orthogonal
basis for the Krylov space IC,(A,v1) = {vl ,Avl , . . . ,A ' - lv l } , where vi
is the first column of V,. Let $;(A) = n i = l (A - rj) where i 5 T . In
the discussion that follows, we will show how to implicitly compute an
orthogonal basis (and corresponding Arnoldi reduction) for the updated
Krylov space $; (A) K r - ; (A , q) , that is, we compute an orthogonal basis for
the updated space without using A. In particular, if all the rj are equal to
zero, then we have equivalently performed subspace iteration on &-,(A, vi) .

A tedious but straightforward induction argument shows that

$i (A) Vr-i = Vr Gr -i , (2.2)

where G,-; contains the leading T - i columns of $;(ITr). If the Q R
factorization of G,-j is UlR1, where R1 is an upper triangular matrix of
order T - i , then

Thus the T - i columns of VLi provide an orthogonal basis for the range of
$(A)Vr-;. In particular, the starting vector v1 associated with the Arnoldi
reduction (2.1) has been updated with the polynomial filter $;(A). The roots
or implicit shifts rj may be selected to filter unwanted information from the
starting vector and hence from the Arnoldi reduction.

Although another Arnoldi reduction can be computed using the first
column of V:; as the starting vector, the Arnoldi reduction (2.1) can be
updated directly to obtain

$(A)Vr-j = VrUlR1 3 VLjR1. (2.3)

2 THE IMPLICITLY RESTARTED ARNOLDI METHOD 4

We now briefly explain how this can be accomplished.

1. Perform i steps of the implicitly shifted QR algorithm on H,. This
results in the similarity transformation HTU = UH,?, where U is an
orthogonal matrix of order T and H$ is also upper Hessenberg.

2. A classical result shows that the first r - i columns of U are equal to U1
and, therefore, they provide an orthogonal basis for the leading T - i
columns of $;(H,.). (See Stewart, 1973, pages 351-355 or Watkins,
1991, pages 293-305.)

3. Postmultiply the Arnoldi reduction (2.1) with U1 to obtain AV,U1 =

4. Equate the first r -i columns of H,U = UH: to get HrU1 = UlH,f_;+
&u,-;+1, where H:-; is the leading principal matrix of order T - i
in H,?, p:-i is the subdiagonal element in row r - i of H,?, and u,-i+l

is column T - i + 1 of U .
5. Insert the expression for H,.U1 derived in step 4 into the postmultiplied

V,H,Ul+ freTU1.

Arnoldi reduction of step 3 to obtain (2.4).

The above development shows that the IRAM is subspace iteration (via
$(A)) in disguise. This equivalence was mentioned in Meerbergen and
Spence (1997). See Lehoucq (1997) for further details on the connection
between subspace iteration and the implicitly shifted Q R algorithm.

We end our discussion by addressing the issue of the selection of the
implicit shifts y j . One possible shift selection strategy is the so-called
ezact shift (Sorensen 1992) strategy, where the T eigenvalues of H,. are
partitioned into a set of k wanted and 1 unwanted ones according to a
selection criterion. For example, if the left-most eigenvalues are sought,
the unwanted set comprises the 1 right-most eigenvalues. The unwanted
eigenvalues are used as the shifts and thus a polynomial filter of degree
i = 1 is applied. This is equivalent to restarting the Arnoldi reduction with
a linear combination of the approximate eigenvectors associated with the
wanted eigenvalues. Another possibility is to use implicit shifts of zero.
As already discussed, this is equivalent to performing subspace iteration
on V,-i. The use of implicit shifts of zero is also discussed by Meerbergen
and Spence (1997) and will be reported on in our numerical experiments
(Section 9).

3 INTRODUCTION TO MATRIX TRANSFORMATIONS 5

3 Introduction to matrix transformations

Before we can apply an iterative eigensolver, we transform the generalized
eigenvalue problem Az = XBz into a standard eigenvalue problem of the
form

We need to do this because iterative methods such as subspace iteration
or Arnoldi’s method cannot be used directly to solve the generalized
eigenvalue problem. It is well known that iterative eigensolvers rapidly
provide approximations to well-separated extremal eigenvalues. When the
eigenproblem arises from the spatial discretization of a partial differential
equation, the sought-after eigenvalues (in our application, those of smallest
real part) are generally not well separated. This results in slow convergence
of the iterative method and, indeed, the method may never provide good
approximations to the wanted eigenvalues. We therefore want to choose T
to have the following properties:

0 The sought-after eigenvalues of (A , B) should be transformed to well-
separated extremal eigenvalues of T.

0 The wanted left-most eigenvalue XI of (A , B) must be easily
recoverable from the dominant eigenvalue of T.

0 For any U, w = Tu should be efficiently computed.

We shall denote the eigenvalues of T by 8; (i = 1,. . . , n + m) and we
will assume that these eigenvalues are ordered by decreasing order of their
absolute values i.e. i > j * l8;l 5 ISjI.

For the generalized eigenvalue problem, As = XBs, rational
transformations are an obvious choice because the solution of some linear
system involving A , B and/or a linear combination of A and B is needed.
In this report, we study shift-invert and Cayley transformations.

4 Shift-invert techniques

In this section, we review the use of the shift-invert spectral transformation
and the many associated details for the eigenvalue problem (1.2).

4 SHIFT-INVERT TECHNIQUES 6

4.1 The shift-invert transformation

If we subtract oB (A # o) from both sides of A z = XBz and then
postmultiplying by (A - oB)-l(A - o)-',

(A - o ~) - l ~ a : = ex, e = (A - a)-l (4 4

(4.2)

results. The matrix

Tsi(~) = (A - oB)-lB

is termed the shift-invert transformation, and was first introduced
by Ericsson and Ruhe (1980) for use in a Lanczos method. The scalar
o is referred to as the shift or pole. Since the eigenvectors of (A , B) and Tsi
are identical, the relationship

(4.3)
1

X = c r + - e
can be used to recover the eigenvalues of (A , B) from those of the
transformed problem. The shift-invert transformation combined with an
iterative eigensolver can be used to find eigenvalues of (A , B) lying close
to cr because eigenvalues close to cr are mapped away from the origin while
those lying far from o are mapped close to zero.

For the shift-invert transformation to be suitable for finding complex
eigenvalues with arbitrary imaginary part, the shift cr must be complex.
One possibility is to work entirely in complex arithmetic but, in our
application, the matrices A and B are real. The eigenvalues of (A , B)
come in complex conjugate pairs and so it is desirable to use algorithms
which compute complex conjugate pairs. This is because, if there are pairs
of eigenvalues lying close to one another, it may be difficult to match the
pairs if the conjugates are only computed approximately. A wrong match
can give incorrect eigenvectors. The alternative is to work entirely using
real arithmetic. This is discussed by Parlett and Saad (1987). Maintaining
real arithmetic can only be done at the cost of either affecting sparsity or
doubling the dimension of the problem. Because of these disadvantages that
result from using complex shifts, in this study we do not consider their use.

4.2 Shift-invert theory for the discretized Navier Stokes

In this section we consider the discretized linearized Navier Stokes
equations (1.2-1.3). From a theoretical point of view, no generality is lost

equations

4 SHIFT-INVERT TECHNIQUES 7

by taking the pole 0 in the shift-invert transformation to be zero. In this
case we define the operator S to be

s = ~ ~ ~ (0) = A - ~ B . (4.4)

The following result is given by Meerbergen and Spence (1997) (see
also Malkus, 1981 and Ericsson, 1986).

Theorem 1 S defined by (4.4) has n - m nonzero eigenvalues, a zero
eigenvalue of algebraic multiplicity 2m and geometric multiplicity m. The
order of the Jordan blocks corresponding to the defective eigenvalue 0 is
two. The null space hf Null(S) = Null(B) has dimension m and the
generalized null space 6 Nt~ll(S~)\Nz~ll(S) also has dimension m. n/
and E satisfy SG = hf and S2G = Shf = 0, and, if R := Range(S2), C can
be represented as a direct sum of hf, 9, and R.

In exact arithmetic, when Arnoldi's method is applied with a starting vector
v1 E R then only approximations to the nonzero eigenvalues of S can
be computed. Such an initial vector can be chosen as V I = S2v with v
arbitrary because S2(N + 6) = 0. However, in practice, rounding errors
introduce components in hf + 9 which corrupt the approximate eigenvalues
and eigenvectors. The paper by Meerbergen and Spence (1997) looks at the
efficient control of these unwanted directions and we discuss this in the rest
of this section.

From (1.2-1.3), we see that S has the structure

S = (s1) S1 E R"'", S2 E Rmx".
s2 0 (4.5)

Therefore, if z = () , U E C", p E Cm is an eigenvector of S, then

If 9 # 0 (A is finite), then

and the reduced problem

4 SHIFT-INVERT TECHNIQUES 8

may be used to determine the nonzero eigenvalues and corresponding
eigenvectors of S. (Since SI E R"'", there still remains m zero eigenvalues.)
We did not consider solving this reduced eigenvalue problem because it
involves applying a projection that includes (CTK-lC)-l.

The standard Arnoldi method uses the classical inner product z H y .
For the generalized eigenvalue problem Az = XBz, if the matrix B is
symmetric positive semi-definite, the B semi-inner product z H B y may be
used instead. The so-called B-orthogonal Lanczos method has been used
by Ericsson (1986) and Nour-Omid, Parlett, Ericsson and Jensen (1987)
for the symmetric generalized eigenvalue problem; Meerbergen and Spence
(1997) extend its use to the nonsymmetric problem. They show that
the B-orthogonal method applied to S is equivalent to the M-orthogonal
method applied to SI and that the H, produced by Arnoldi's method is
only contaminated by G components in the Arnoldi vectors. Furthermore,
their analysis also shows that the p component of the eigenvector 2 does
not play a role in the B-orthogonal Arnoldi method and therefore cannot
be guaranteed to be correct.

The p component of z may be computed by applying S to z. This can
be achieved with an implicit application of S. Observe that if x = V,y with
HrY = 8y then a formal step of inverse iteration with S gives

Ericsson and Ruhe used the above implicit application of S to improve
the quality of the eigenvector z. Following Meerbergen and Spence (see
also Nour-Omid et al. (1987)), we use the expression puri,fication of z to
refer to the operation of applying S (or more generally, T.1) to the vector
z. The purified vector is z = z + f,e;y/e.

In summary, two applications of S are required to produce approximate
eigenvectors and eigenvalues that are not corrupted by components in n/
or Q. In exact arithmetic, a starting vector in the range of S2 avoids
any possible corruption. However, as usual, rounding errors complicate
the situation. Meerbergen and Spence propose an approach that is a
combination of the B-orthogonal implicitly restarted Arnoldi method and
purification. Recall from Section 2 that an implicit restart with a zero shift
is equivalent to employing a starting vector Svl. Thus using a zero shift
has the effect of removing the n/ component and maps the Q component
into n/. This remaining n/ component may be removed by a second implicit
application of S using (4.9).

5 CAYLEY TRANSFORMATIONS 9

5 Cayley transformations

The use of generalized and modified Cayley transformations for the
eigenvalue problem (1.2) are addressed.

5.1 Generalized Cayley transformation

Given real numbers U and p with U # Xi (i = 1,. . . , n - m), the generalized
Cayley transformation Tc (see, for example, Garratt, Moore and Spence,
1991) is defined by

T c (~ , p) = (A - oB) - l (A - pB), U < p. (5.1)

We term U the pole and p the zero. This is a generalization of the standard
Cayley transformation where p = -U (Franklin, 1968) and a special case of
the Mobius transformation

(CA + dB)-’(aA + bB), ad - bc # 0. (5.2)

The relationship between the finite eigenvalues of (A , B) and those of the
transformed problem is

A=-* U6 - p
6-1 (5.3)

The usefulness of the generalized Cayley transformation lies in the fact that

1
Re(X) < ~ (u + p) CJ 161 > 1

1
R e P) 2 5 (U + P) * PI 5 1

(see Garratt, 1991). Eigenvalues lying far from U and p are mapped close
to +l. This includes eigenvalues with large real parts as well as those with
large imaginary parts. In many applications arising from discretizations of
partial differential equations, a significant proportion of the eigenvalues of
(A , B) have a large positive real part and only a small number of eigenvalues
lying close to the imaginary axis are of interest in stability analysis. Since
the former map close to unity and (small) changes in the pole and zero have
little effect on this, one way that U and p may be chosen is to place the
first unwanted eigenvalue eS+l (s 2 1) on the unit circle and then maximize
the distance of the dominant eigenvalue 61 from the unit circle. With this

5 CAYLEY TRANSFORMATIONS 10

choice, Arnoldi’s method can be expected to rapidly provide approximations
to the sought-after eigenvalues.

The Cayley transformation (5.1) can also be written in the form

Tc(0, P) = I + (0 - P)TSI(4’ (5.5)

where Tsr(a) is the shift-invert transformation given by (4.2). Thus the
Cayley transformation is a scaled and translated shift-invert transformation.
Since in exact arithmetic Arnoldi’s method is translation invariant
(see Parlett, 1980), the two formulations (5.1) and (4.2) are equivalent in
the sense that Range(Vr(C)) = Range(V,(SI)) (provided the poles of the
transformations are equal and the same starting vectors are used).

The discussion at the end of section 4.2 explained how we can remove
contamination by n/ and 8 when using a shift-invert transformation.
Therefore, from (5.5) we deduce that an implicit restart with a shift of
one removes the h/ and maps the B to a n/ one. To remove this final n/
component, an implicit application with Tc - I is performed. This also
ensures that the p component of the computed eigenvector is correct.

5.2 Modified Cayley transformation

A major drawback of the generalized Cayley transformation Tc is that the
infinite eigenvalues of the discretized Navier Stokes equations are mapped
to +l. It is anticipated that this may cause numerical difficulties because,
in general, eigenvalues at +1 lie in the outer part of the spectrum of the
transformed problem and, as a result, approximations to these eigenvalues
are likely to be computed by iterative methods such as Arnoldi’s method. To
try and overcome this, Cliffe et al. (1993) propose using a modified Cayley
transformation to solve (1.2). They define the modified problem

K - P M ’”) (;) = 8 (K - O M CT ”) 0 (;), (5.6)

with P a real scalar. Clearly, /3 = 1 corresponds to the generalized Cayley
transformation applied to the discretized Navier Stokes equations. The
modified Cayley transformation TM is defined by

where A(P) denotes the matrix on the left-hand side of (5.6).

the modified problem (5.6) (see Garratt, 1991).
It is straightforward to prove the following result for the eigenvalues of

5 CAYLEY TRANSFORMATIONS 11

Theorem 2 Assume a # A; (i = 1,. . . , n - m). If A is an eigenvalue
of the discretized Navier Stokes equations (1.2), then (A - p) / (A - a) as
an eigenvalue of the modified problem (5.6). In addition, (5.6) has m
eigenvalues P, each with algebraic multiplicity 2 and geometric multiplicity
1.

The parameter P is chosen so that the infinite eigenvalues are mapped inside
the unit circle, where they are much less likely to be computed by an iterative
eigensolver. An obvious choice is P = 0 and this is the value which will be
used in our numerical experiments.

Garratt also gives the following simple relationship between the
eigenvectors of the original problem (1.2) and those of the modified problem
(5.6).

Theorem 3 Assume a # A; and /3 # (A; - p)/(A; - a) (i = 1,. . . ,n - m),

then (A, ()) is an eigensolution of the original problem (1.2) if and only

if (e, ()) i s an ezgensolution of the modified problem (5.6) where

6 = (A - P) / (A - 4 e W}, 9 = (8 - M e - P I P * (5.8)

Using this theorem, approximate eigenvectors of (1.2) can easily be obtained
from the computed eigenvectors of (5.6).

In practice, regardless of the Cayley transformation employed, the
Cayley parameters a and p are updated at each restart. This allows rapid
computation of the left-most eigenvalues. If we denote by a (j) and p (j)
the Cayley parameters during restart or iteration j , then an important
consequence of the above result is that the eigenvectors computed with
a = a (j) and p = p (j) are not identical to those with a = a (j + 1) and
p = p (j + 1) (unless the poles and shifts remain the same). Using Theorem 3
it can be shown that the eigenvectors of (5.6) with a(j + 1) and p(j + 1) can
be obtained from those with a (j) and p (j) by an appropriate scaling of the
q term of the eigenvectors. Full details are given by Garratt (1991) (page
98).

We would like to avoid having to scale the eigenvectors at the start of
each iteration. We now discuss how this can be done. With the choice P = 0,

6 CAYLEY TRANSFORM ARNOLDl 12

the modified problem (5.6) can be rewritten in the form

s(;)=(2 ;) (;) = e (;), (5.9)

where has the same structure as the shift-invert operator S for the
discretized Navier Stokes equations described in Section 4.2. We also note
that when using the modified Cayley transformation in the B-orthogonal
Arnoldi method, the q component of the eigenvector does not play a role
and the correct eigenvector is obtained by post-processing with 8. The

required eigenvector () of the discretized Navier Stokes equations can

then be computed using Theorem 3. However, as it is p and not q that is
required, we may compute p directly by purifying with Tsr.

More generally, using either the standard inner product or the B semi-
inner product, we can obtain the eigenvector of the original problem by
applying Tsz to the computed eigenvector of the modified problem.

6 Cayley transform Arnoldi

In this section, we summarize the algorithm we use for the solution of the
discretized linearized Navier Stokes equations. We combine shift-invert and
Cayley transformations with Arnoldi’s method. Shift-invert is used to get
an initial approximation to the spectrum and is also used to purify the
computed eigenvectors. Various implementation details are discussed. In
Sections 7 and 8 we look at the linear equation solver and the use of the
ARPACK software to implement our algorithm.

6.1 Algorithm outline

We first present an outline of our Cayley transform Arnoldi algorithm. Here
we assume that the number of sought-after eigenvalues is s and the number
of Arnoldi vectors to be generated at each iteration is T .

In an abuse of notation, we denote the approximate eigenvalues and
eigenvectors computed for Tsr or Tc by 6 and z, respectively. Hence, X
is a 6 that is mapped back to an approximate eigenvalue of the original
eigenvalue problem (1.2).

6 CAYLEY TRANSFORM ARNOLDI 13

Shift-invert iteration:

1. Factorize A = LU
2. Choose v1 randomly and normalize.

3. Compute v1 + S2v1 (S = A-'B) and normalize.

4. Compute &,&, . . . ,Or by computing an Arnoldi reduction of length r

5. Let A; = l\&, i = 1,2,. . . , T .

6. Order A; in increasing order of their real parts.

for S.

Cayley iterations:

7. Choose 211 randomly and normalize.

8. Compute + S2v1 and normalize.

9. repeat until convergence
(a) Choose Q < p with (Q + p)/2 = Re(A,+1).
(b) Factorize A - OB = LU.
(c) Compute &,&, . . . ,Or by computing an Arnoldi reduction of

(d) Let A; = T;'(O;), i = 1,2,. . . , T .

(e) Order A; in increasing order of their real parts.
(f) Construct a new starting vector v1 by implicitly restarting the

10. Compute eigenvectors z; of Tc corresponding to the converged

11. Obtain eigenvectors of (A , B) by purifying z; + Tsr(a)z;.

length T for Tc.

Arnoldi reduction of length T .

eigenvalues.

We observe that shift-invert with a zero pole is used to compute an initial
approximation to the spectrum of (A , B) . Zero is an appropriate choice for
the pole because the interest is in the eigenvalues lying close to the imaginary
axis. We do not test for convergence after the shift-invert step because the
eigenvalues close to the origin may not be the left-most eigenvalues. We
thus always force at least one step of the Cayley iteration to be performed.
During the Cayley iterations, we check at each iteration that Q has changed
since the previous iteration to avoid refactorizing A - OB unnecessarily.

In our numerical experiments, we used the generalized and modified
Cayley transformations in conjunction with the standard inner or B semi-
inner products.

6 CAYLEY TRANSFORM ARNOLDI 14

6.2 Convergence testing

We have to decide when the computed eigenvalues and eigenvectors are
good approximations to those of (A , B). We proceed to determine this in
two steps. The first step checks if 8 and z are acceptable as approximations
to an eigenpair of Tc. The second step checks that 8 and z produce an
acceptable approximation to an eigenpair of (A, B).

Let z = V,y with H,y = By, where llyll2 = 1 . Although the direct
residual IITcz - 8zll could be computed, this would involve additional
applications of Tc. However,

(6.1)
T TCX - OX = T c V , ~ - VpHry = fp e , y ,

and so the Ritz estimate l l f , l l leTyl is equal to the direct residual. ARPACK
accepts 8 as a good approximation if llfpll leTyl l 8 l q ~ , where EU is
a user-specified tolerance. We remark that ARPACK uses llf,llB or llfrll2

depending on the inner product used. Since the eigenvalues of interest are
the eigenvalues of Tc of largest modulus, normalizing the residual by 181
takes into account the scale of the data.

We now discuss how to check whether 8 and z provide a good
approximation to an eigenpair of (A , B). A simple rearrangement of (6.1)
results in m

and this is the residual of the computed eigenpair in the original system.
However, as discussed in Section 5.1, purification of z is performed-to
remove nullspace components of B and as an inexpensive means of improving
the quality of z-via an implicit application of Tsz or, equivalently, via
Tc - I. Using (6.1),

(~ c (a , p) - 1) ~ = (8 - 1). + eTyf,. (6.3)

The approximate eigenvector z is replaced by the purified vector z = z +
eTy/(8 - 1) f i . e From (6.2), it is straightforward to show that the residual of
the purified vector in the original system is

6 CAYLEY TRANSFORM ARNOLDI 15

From Equation (6.1), we see that z is orthogonal to the residual Tcz-Oz.
This Galerkin condition is lost upon transforming the computed eigenpair
to the original system-whether we use z or z . This is because e is not
the Rayleigh quotient associated with z or z . If the B-orthogonal Arnoldi
method is used, then from (6.4)

The last inequality follows because 11z11i 2 1. In other words, the
approximate eigenvalue (a0 - p)/(0 - 1) is nearly a Rayleigh quotient for
(A,B) when the purified vector z is used as the approximate eigenvector.
On the other hand, from Equation (6.2) we deduce that

is the error in using (a0 - p)/(0 - 1) as a Rayleigh quotient for (A, B) when
the unpurified eigenvector z is used.

Equations (6.4) and (6.5) imply that the purified vector z is a better
approximation than z for the eigenvector associated with the approximate
eigenvalue (d-p>/(0-1) provided that 10-1 I is greater than one. Moreover,
when 10 - 1 I > 1, only a moderately-sized Ritz estimate is needed to achieve
a small direct residual, a small Rayleigh quotient error, and 11~11 = 1 up
to second order terms. If the pole U is near the left-most eigenvalues, then
these left-most eigenvalues are mapped by Tc to large eigenvalues and hence

Our numerical experiments measure the direct residual using both z and
z with X = (aO-p)/(O-l). We define the relative residualof an approximate
eigenvector U to be

We employ the Euclidean norm for the relative residual regardless of
whether ARPACK is used with the standard inner or B semi-inner product
so that the pressure component of the approximate eigenvector can be
checked. Section 8.1 will give details of how ARPACK normalizes the computed
eigenvectors.

le - 11 > 1.

llAU - ~ B 4 l Z / l l 4 l Z . (6.7)

6.3 Missing eigenvalues

It is necessary to exercise some caution to avoid accepting an approximation
to an eigenvalue that is not the one of smallest real part. Recall that

6 CAYLEY TRANSFORM ARNOLDI 16

the parameters o and p are chosen using the latest approximations to
the eigenvalues. Suppose the left-most eigenvalue A 1 is complex with a
large imaginary part and A3 is real with A3 z Re(A1), and let be
the eigenvalue of the transformed problem corresponding to A;. We have
observed during numerical experiments that 1831 > 1811 with 81 close to +l.
In this case, Arnoldi’s method rapidly produces an accurate 83 and, without
further checks, the corresponding eigenvalue A3 is accepted as the left-most
eigenvalue of the original problem. We stress that this is a result of only
having available approximations to the eigenvalues when selecting o and
p. This problem was also observed by Garratt (1991) and Meerbergen and
Roose (1996).

In an attempt to overcome the problem of accepting the wrong eigenvalue
as the left-most one, we introduce an additional test on the computed
eigenvalues. Once the dominant eigenvalues (largest in magnitude) of
the transformed problem are acceptable approximations, we order the T

eigenvalues of the transformed problem in decreasing order of their moduli.
We then compute the corresponding T eigenvalues of the original problem
and order them in increasing order of their real parts. B y comparing the
two orderings we are able to check whether or not any computed eigenvalues
lie to the left of those that are acceptable approximations. If there any such
eigenvalues, we increase the number s of eigenvalues requested. Although
this strategy is not guaranteed to find eigenvalues that have been missed, it
can help avoid accepting the wrong eigenvalue. Numerical experiments in
Section 9 demonstrate that our strategy is effective.

6.4 Spurious eigenvalues

Recall from Theorem 2 with p = 1 that the generalized Cayley
transformation applied to the discretized Navier Stokes equations has 2m
eigenvalues at +1 corresponding to the infinite eigenvalues of (1.2). These
eigenvalues are not relevant for the stability analysis but are likely to
be computed because they lie in the outer part of the spectrum of the
transformed problem. It is important when updating the Cayley parameters
o and p that we do not use these spurious eigenvalues. The eigenvalues
used in choosing o and p are the current s + 1 left-most eigenvalues
A 1 , A 2 , . . . , A s + l . From (5.3)) it follows that if 8 = 1 + 6 with S > 0
small, A will be large and negative and will be used in selecting the Cayley
parameters. On each iteration we therefore exclude all real 6; which lie close
to 1. Our numerical experiments showed that if we did not do this, the

7 THE LINEAR EQUATION SOLVER 17

IRAM did not produce approximations to the wanted eigenvalues. We also
exclude spurious eigenvalues when we search for possible missing eigenvalues.

7 The linear equation solver

The efficiency of an iterative eigensolver for the generalized eigenvalue
problem depends on the efficiency of the method used to solve linear systems
of the form

Either a direct method or an iterative method may be used. For
very large problems, direct methods can be prohibitively expensive in
terms of both time and memory requirements. However, there are
also difficulties associated with selecting and using iterative methods for
eigenvalue computations and they have not yet been widely adopted for
the solution of industrial problems (see Meerbergen and Roose, 1996 for
a discussion and references). In this study, we use a frontal method for
the solution of (7.1). One important reason for this choice is that, in the
applications of interest to us, finite-element discretizations are used and the
matrices A , B are available as unassembled finite element matrices of the
form

1=1 1=1

where A(') and B(') are nonzero only in those rows and columns that
correspond to variables in the lth element. The recent study by Duff and
Scott (1996a) has shown that for efficiency in terms of the factorization
time and sparsity of the matrix factors, it is important not to assemble
the matrices prior to solving the linear system but the element form
should be exploited. Using the element form also allows us to solve much
larger systems than might otherwise be possible because each element
matrix A(') and B(') need only be generated as it is required, substantially
reducing storage requirements. Storage requirements can be further
reduced by holding the matrix factors out-of-core. The only code for
nonsymmetric systems we currently have available in the Harwell Subroutine
Library (Harwell Subroutine Library 1996) that allows both element input
and (optional) out-of-core storage is the frontal solver MA42 of Duff and Scott

7 THE LINEAR EQUATION SOLVER 18

(1993, 1996b), and this is the code we use in our numerical experiments. For
simplicity of notation, in the following brief discussion of frontal schemes,
we assume we are solving As = b (that is, U = 0).

The frontal method (Irons 1970, Hood 1976, Duff 1984) is a variant of
Gaussian elimination and involves the matrix factorization

A = PLUQ,

where P and Q are permutation matrices, and L and U are lower and
upper triangular matrices, respectively. The solution process is completed
by performing the forward elimination

PLY = b, (7.3)

followed by the back substitution

UQx = y. (7.4)

The method, although originally developed by Irons for symmetric positive
definite systems, can be used for symmetric and nonsymmetric systems. If

assembly operation when forming A is of the form

aij and aaj (1) denote the (i , j) t h entry of A and A('), respectively, the basic

It is evident that the basic operation in Gaussian elimination

aij e aaj - aaq[aqq]- 1 dqj

may be performed as soon as all the terms in the triple product (7.6) are
fully summed (that is, are involved in no more sums of the form (7.5)).
The frontal method interleaves the assembly and Gaussian elimination
processes and avoids the explicit assembly of the matrix A. This allows
all intermediate computation to be performed on a dense matrix, termed
the frontal matrix, whose rows and columns correspond to variables that
have not yet been eliminated but occur in at least one of the elements that
have been assembled. By working within the frontal matrix, it is possible
to use dense linear algebra kernels and, in particular, the Level 3 BLAS can
be exploited (Dongarra, DuCroz, Duff and Hammarling 1990). The use of
BLAS in MA42 is described in Duff and Scott (1996b).

7 THE LINEAR EQUATION SOLVER 19

In practice, for general systems of equations, stability considerations may
delay some eliminations. MA42 uses a threshold criterion of the from

where the stability threshold U E (0,1] is a parameter chosen by the user.
Note that using a small value of U will lead to few delays and minimize the
number of entries in the factors while a larger value of U (for example, the
default value U = 0.1) improves stability. The choice U = 1.0 corresponds to
partial pivoting.

By holding the matrix factors in direct access files, the frontal method
can solve quite large problems with modest amounts of high-speed memory.
We remark that, because the size of the frontal matrix increases when a
variable appears for the first time and decreases whenever it is eliminated,
the order where the elements are assembled has a crucial effect on the storage
requirements and on the number of floating-point operations. Elements
should be preordered to reduce the size of the frontal matrices. In our
experiments the elements are preordered using the Harwell Subroutine
Library code MC43.

Once the matrix factors have been formed and stored, the MA42 package
has a separate entry, MA42C, that uses the factors for solving a linear system
with multiple right-hand sides b. As well as using high level BLAS in the
factorization, the BLAS are used when performing the forward elimination
(7.3) and the backward substitution (7.4). When solving for a single right-
hand side, the Level 2 BLAS are used but if there are multiple right-hand
sides, the Level 3 BLAS are used. Since greater efficiency is achieved by
using the Level 3 BLAS and the factors have only to be read in once for
each call to MA42C, the performance of MA42 improves with the number of
right-hand sides. This is illustrated in Section 9 (see also Duff and Scott,
1993).

When using a shift-invert or Cayley transformation, the matrix A - QB
must be refactorized each time the pole Q is updated. A disadvantage of
using Arnoldi’s method as the eigensolver is that it requires the repeated
solution of linear systems with a single right-hand side. This is in contrast
to the subspace iteration method, where the number of right-hand sides is
equal to the subspace dimension T . Partly because of this, Lehoucq and
Maschhoff (1997) have recently developed a block version of the implicitly
restarted Arnoldi method.

8 THE SOFTWARE PACKAGE ARPACK 20

8 The software package ARPACK

In this section, we summarize ARPACK and the modifications we made so
that Cayley transformations could be used.

8.1 Introduction to ARPACK '

The ARPACK software package (Lehoucq et al., 1998) provides subroutines
that implement the implicitly restarted Arnoldi metho (IRAM). ARPACK
was developed for finding a few eigenvalues of large-scale symmetric,
nonsymmetric, standard or generalized eigenvalue problems (complex
arithmetic versions are available). An important feature of the package
is the reverse communication interface. This feature provides a convenient
way to interface with application codes without imposing a structure on the
user's matrix or on the way in which matrix-vector products are computed.
In particular, if the matrix is not available explicitly, the user is free to
express the action of the matrix on a vector through a subroutine call or
code segment. This makes the code attractive for our applications where the
matrices A and B are unassembled finite-element matrices (see (7.2)). For
large problems, there may be insufficient storage to hold all the element
matrices A(') and B(') in-core. The use of an eigensolver which does
not require the matrices to be held using a prescribed format is therefore
essential.

Another important feature of ARPACK is that full numerical orthogonality
(to machine precision) of the Arnoldi basis vectors is maintained. A point
we wish to emphasize is that the cost of this orthogonality often represents
less than 5% of the total cost of the eigensolver. For large-scale problems,
the dominant cost is that of performing matrix-vector products.

There are many different options included within the ARPACK package.
Here we briefly mention those that are useful for solving the problems of
interest to us: full details of ARPACK are given in Lehoucq et al. (1998).

0 The user may select the implicit shifts in the implicitly shifted Q R
algorithm performed during each iteration. This allows implicit shifts
of zero to be used.

In our
experiments, we want to purify the starting vector before using ARPACK
and this option enables us to do this.

0 The initial starting vector 211 may be chosen by the user.

8 THE SOFTWARE PACKAGE ARPACK

0 The default convergence tolerance use(

21

PACK is machine
precision. Since our main interest is in determining whether the
left-most eigenvalue has a positive or negative real part, we do
not need to compute the eigenvalues to a large number of decimal
places. Therefore, in our experiments we will use a larger convergence
tolerance (see Section 9).

0 When using ARPACK to solve the generalized eigenvalue problem, Az =
XBs, where B is a symmetric positive semi-definite matrix, the B
semi-inner product may be used. We will use both the standard inner
product and the B semi-inner product.

0 For the generalized eigenvalue problem, the user has the option of using
a shift-invert transformation T, r (a) or, if A is symmetric, a standard
Cayley transformation Tc(a, -a). If the shift-invert or Cayley mode
is used, ARPACK accepts a computed eigenvalue and eigenvector of Tsr
or Tc if the associated Ritz estimate (6.1) is sufficiently small. See the
discussion after (6.1).

0 Eigenvectors may be computed on request once approximations to the
sought-after eigenvalues have converged. If eigenvectors are requested
and a shift-invert or Cayley transformation has been employed, the
computed eigenvalues are mapped to those of the original system.

We conclude by explaining how ARPACK normalizes the computed
eigenvectors. If the standard inner product is used, the computed
eigenvector U corresponding to a real computed eigenvalue is normalized
so that 11~112 = 1; if the B semi-inner product is used, then 1 1 ~ 1 1 ~ = 1.
When the eigenvectors corresponding to a computed complex conjugate
pair of eigenvalues are computed, the real and imaginary parts, U R and
u ~ , of the vector associated with the computed eigenvalue with positive
imaginary part are stored. If the standard inner product is used, 'U is
normalized so that U ~ U R + u y u ~ = 1; if the B semi-inner product is used,
then UTRBUR + uyBul= 1.

8.2 Modifications to ARPACK

To use ARPACK for computing the left-most eigenvalues of the discretized
Navier Stokes problems, it was necessary to make a small number of
modifications to the package. These modifications essentially involved
making the existing reverse communication interface more flexible. This
flexibility was necessary to accommodate our use of spectral transformations.

9 NUMERICAL EXPERIMENTS 22

As mentioned above, for the generalized eigenvalue problem As = XBs,
the user may optionally use a shift-invert transformation Tsr(o). When
using this option, it is assumed that the user has chosen the pole o and
that the same pole is used throughout the computation: a facility for
updating the shift is not explicitly offered. There is also no option for
using a Cayley transform when A is nonsymmetric. We had to make
minor changes to ARPACK so that we could use the generalized or the
modified Cayley transformation. In addition, we needed changes to enable
us to switch between using shift-invert and Cayley, and to allow us to
update the Cayley parameters at each iteration. Our modified codes
are available by anonymous ftp from f t p . cam. r i c e . edu in the directory
pub/software/ARPACK/CONTRIBUTED.

We observe that MA42 does not assume the degrees of freedom are
numbered contiguously from 1 to n + m. MA42 is designed in this way
because in many finite-element applications (including the examples used
in our numerical experiments), the boundary conditions imply that some of
the degrees of freedom are known and so do not appear in the element data
passed to the linear solver. As a result, the largest integer used to index
a variable is greater than the order of the system. However, ARPACK does
require contiguous numbering and we therefore have to map between the
global freedom numbers used by MA42 and the local freedom numbers used
by ARPACK. Using MA42 with ARPACK also means that we have two reverse
communication interfaces to deal with, and this adds to the programming
complexity.

9 Numerical experiments

In this section, we present numerical results for three tests problems. The
test problems were supplied to us by Simon Tavener of Pennsylvania State
University and were obtained using the finite-element package ENTWIFE
(Cliffe, 1996). ENTWIFE was developed by AEA Technology to solve
discretized elliptic and parabolic partial differential equations using finite-
element methods. The code is used to compute singular points such as limit
points, symmetry-breaking bifurcation points, and Hopf bifurcation points
of the steady solution set. The current interest is in stability of laminar
flows both in expanding channels and pipes and past bodies in pipes and
channels. ENTWIFE uses subspace iteration as its eigensolver and employs
the frontal code MA42 as its linear equation solver. Experience has shown

9 NUMERICAL EXPERIMENTS 23

the subspace iteration solver to be reliable but the method is too slow to
solve the large problems (up to 250,000 degrees of freedom) that are now
of interest. One of the major aims of this project was to investigate the
reliability of implicitly restarted Arnoldi with a view to using ARPACK as
the eigensolver in ENTWIFE.

The problems used in our tests, while not as large as those AEA
Technology would like to solve, are typical of the problems of interest. All the
tests were performed on a SUN Ultra 1 workstation using double precision
arithmetic. All timings are CPU times in seconds. As explained at the end
of section 6.2, the Euclidean norm is used for computing all residuals. In
each test, we were seeking the two left-most eigenvalues.

In our tables of results, the residual is given both before and after

(3 purification, that is, before and after the computed eigenvectors z =

are premultipled by the shift-invert operator Tsz. Recall that for the
modified Cayley transformation TM, the p component of z is not guaranteed
correct until premultiplication by Tsr has been performed and so, in this
case, the residual is only given after purification.

We also point out that, as mentioned, ARPACK maintains full (numerical)
orthogonality of all T Arnoldi vectors. It should be emphasized that the
dominant costs in time when computing eigenvalues of our test problems
are those associated with performing matrix factorizations, solving linear
systems using the matrix factors, and performing matrix-vector products
with A(P) and B. Our experience was that the time required to maintain
the full orthogonality of the Arnoldi vectors along with all the other costs
associated with the ARPACK implementation of the IRAM represented only
2%-3% of the total computation time. This is why in our tables of results we
only give the total time together with the times for the matrix factorizations,
solving linear systems, and performing matrix-vector products.

9.1 Problem 1

The first problem we look at is that of two-dimensional double-diffusive
convection in a box (see Ortega, 1973, chapter 8, and Garratt, 1991, page
102). The model used has the following non-dimensional parameters: the
Prandtl number Pr, the Rayleigh number Ra, the salinity Rayleigh number
Rs and T , the ratio of solutal and temperature diffusivities. A mixed finite-
element approximation is used, with nine-noded quadrilateral elements with
biquadratic interpolation for velocities, temperatures, and salinities, and

9 NUMERICAL EXPERIMENTS 24

discontinuous piecewise linear interpolation for pressures. This leads to a
system of equations of the form (1-1), where U E R" represents velocity,
temperature, and salinity, and p E Rm represents pressure. Using a 16 x 16
grid, there are a total of 4859 degrees of freedom. Although it is possible
to solve the linearized stability problem analytically, the problems which
are obtained by varying the parameters are ideally suited for testing the
effectiveness of our eigensolver for detecting Hopf bifurcations. We compute
the left-most eigenvalues using the parameter values Rs = 2000, Pr = 10,
and 7 = 10-2 and three different values of the Rayleigh number Ra. For
each value, the left-most eigenvalues are listed below (see Cliffe et al., 1993).

a Ra = 2440:
A1 = 9.8696 x 10-2, A2 = 3.9478 x lO-l,
A3,4 = 3.9478 x 10-1 f i2.4561 x 10.

a Ra = 2480:

A1,2 = 4.7486 x 10-2 f i2.4502 x 10, A3 = 9.8696 x 10-2.
a Ra = 2520:

A1,2 = -3.5071 x 10-1 f i2.4437 x 10, A3 = 9.8696 x 10-2.
The interest lies in the loss of stability as Ra increases. The values Ra =
2440 and 2480 correspond to stable steady state solutions and Ra = 2520 is
an unstable steady state. The change in stability is due to a complex pair
of eigenvalues crossing the imaginary axis at a Hopf bifurcation at Ra
2484. We anticipate that Ra = 2480 may cause our eigensolver difficulties
because IRe(A1) - Re(A3)l is small relative to IIrn(A1)l. For Ra = 2440
the left-most eigenvalues are real and shift-invert with a zero shift will be
successful. However, for Ra = 2480 and 2520, shift-invert misses the left-
most eigenvalues.

We also consider varying Rs, with Ra = 2440 and the remaining
parameters unchanged.

0 Rs = 1900:

A1,2 = -4.6001 x 10-1 f i3.3800 x 10, A3 = 9.8696 x 10-2.
a Rs = 1950:

A1,2 = -7.5082 x 10-3 f i2.4185 x 10, A3 = 9.8696 x 10-2.

A1 = 9.8696 x 10-2, A2,3 = 2.2047 x 10-' f i2.4374 x 10,
A4 = 3.9478 x 10-'.

a Rs = 1975:

9 NUMERICAL EXPERIMENTS 25

= 1 0 - ~
Flops for factorization 1.19 x 108
Real factor storage (Kwords) 965
Integer factor storage (Kwords) 92
Minimum in-core storage (Kwords) 23
Factorize time (secs) 6.7
Solve time: 1 right-hand side (secs) 0.5

1.5 Solve time: 10 right-hand sides (secs)

Rs = 1900 and 1950 correspond to unstable steady state solutions while
Rs = 1975 is a stable steady state. We expect that finding A2 will be
difficult in the case Rs = 1975 since A2 has a large imaginary part and lies
between 2 real eigenvalues with IRe(A1) - Re(X2)I and IRe(X4) - Re(X2)I
small compared to IRe(X2)l.

In Table 1 we present statistics for this problem for factorizing A and
solving systems Az = b using MA42. We give results for the first set of
parameter values given above (Rs = 2000, Pr = 10, T = 10-2, Ra = 2440)
but similar results are obtained for the other parameter values used, Here
and in other tables where the number of floating-point operations (“flops”)
are quoted, we count all operations (+,-,*,/) equally. Following advice from
AEA Technology, here and elsewhere the threshold parameter U (7.7) is set
to l O - ’ . For our test examples, we found that this choice of U did not
lead to any instabilities and gave significantly sparser factors than those
obtained using the default value of 0.1. Sparse factors are important for the
factorization and solve times.

U = 10-1

3037
217
286
113.8
1.5
4.4

1.17 x 109

9 NUMERICAL EXPERIMENTS 26

Table 2: Basic operations, times, and residuals for Tc and TM for problem
1 with a range of values of Ra. Zero shifts and the B semi-inner product
are used. For Tc, p = 1.0 and for TM, p = 0.0.

Ra = 2440 Ra = 2480 Ra = 2520
Tc TM Tc TM Tc TM

Basic operations:
Factorizations 2 2 2 2 2 2
Linear solves 46 46 46 46 46 46

B * x 126 126 127 127 127 127

Times (secs) :
Factorizations 14.6 14.2 14.3 14.1 14.2 14.0
Linear solves 23.9 24.9 24.0 24.2 24.6 25.1
A(P) * z 4.3 12.8 4.4 13.0 4.3 12.9
B * Z 30.5 30.3 30.9 30.2 30.4 30.8

- PB) * 0.4 0.8 0.4 0.6 0.4 0.7
Total 75.4 84.8 75.7 83.7 75.5 85.1
Relative residuals:

After Durification 1.61d-17 1.63d-17 5.90d-10 5.90d-10 4.65d-10 4.65d-12

A(P) * z 20 20 20 20 20 20

(A(P) - PB) * 2 1 1 1 1 1 1

Before purification 1.74d-17 1.19d-08 1.17d-08

9 NUMERICAL EXPERIMENTS 27

Table 3: Basic operations, times, and residuals for Tc and TM for problem
1 with a range of values of Rs. Implicit shifts of zero and the B semi-inner
product are used. For Tc, p = 1.0 and for TM, p = 0.0.

128 = 1900 RA = 1950 RA = 1975
Tc TM Tc TM Tc TM

Basic operations:
Factorizations 2 2 2 2 5 5
Linear solves 46 46 46 46 119 119
A(P) * = 20 20 20 20 90 90
B * Z 126 126 127 127 339 339
(4 P) - P B) * Z 1 1 1 1 4 4
Times (secs):
Factorizations 14.2 14.0 14.3 14.0 35.3 34.9
Linear solves 25.1 25.0 24.9 24.9 64.5 64.3
A(P) * Z 4.3 12.8 4.3 12.8 19.2 58.0
B * Z 30.0 30.2 30.1 30.2 80.1 81.4
(4 P) - PB) * 2 0.4 0.7 0.4 0.8 1.7 2.6
Total 75.7 84.3 75.7 84.4 205.3 245.6
Relative residuals:

After Durification 4.31d-10 4.31d-10 5.69d-10 5.69d-10 7.71d-10 1.49d-10
Before purification 6.39d-09 8.74d-09 1.49d-08

9 NUMERICAL EXPERIMENTS 28

S for the shift-invert step and a single Cayley iteration. For Rs = 1975,
the test described in Section 6.3 found that the left-most eigenvalues had
been missed. At this point T was increased to 25 and the number of
requested eigenvalues was increased to 4. The computation then continued
and the correct eigenvalues converged. We remark that this check for missing
eigenvalues and the subsequent increase in T and the number of sought-after
eigenvalues is performed automatically within our code: no action is required
by the user.

Our results show that, for problem 1, that when using implicit shifts
of zero during the restart and the B semi-inner product, there is little to
choose between the generalized and modified Cayley transformations. Both
use the same number of factorizations and linear solves. However, in terms
of time, TM is slightly more expensive. This is accounted for by the way we
hold the element data.
us is in the form of the

For each of our test problems, the data supplied to
element matrices for

To form A(P) * 2 , we only need the first of these matrices when P = 1.0,
but when p = 0.0, all 3 are needed. The overhead of reading and using
these extra element matrices makes TM more expensive to use. Moreover,
purification must be done explicitly when using TM; an implicit purification
may instead be used when using Tc.

In Table 4 we report results for problem 1 with Rs = 1975 for a range
of values of T . In this table, Tat denotes the final value of T . We see
that, even with the test for missing eigenvalues discussed in Section 6.3,
with T = 10, A2 is missed. As T is increased, the number of factorizations
(which is equal to one more than the number of Cayley iterations) decreases,
until with T = 30 the number of factorizations is the minimum possible.
This highlights one of the difficulties of using ARPACK to solve a problem
when the user has no prior knowledge of the spectrum. The user must
select T . If T is too small, the sought-after eigenvalues may be missed,
and if T is too large, unnecessary work is performed. As discussed earlier,
the most expensive parts of the eigenvalue computation in terms of time
are those associated with performing matrix factorizations, solving linear
systems using the matrix factors, and performing matrix-vector products
with A(P) and B. Increasing T increases the number of matrix-vector
products performed on each iteration. If the number of iterations does not
decrease, this can significantly increase the computation time. We see this

9 NUMERICAL EXPERIMENTS 29

Table 4: Basic operations, times, and residuals for Tc for problem 1 with
Rs = 1975 using a range of values of T . Implicit shifts of zero and the B
semi-inner product are used. * denotes A2 was missed.

r = l O r = 2 0 r = 2 5 r = 3 0 t = 3 5
rout 10 25 25 30 35
Basic operations:
Factorizations * 5 3 2 . 2
Linear solves * 119 82 66 76
A*Z * 90 50 30 35
B * Z * 339 233 186 216
(A - p B) * Z * 4 2 1 1
Times (secs):
Factorizations * 35.3 21.0 14.5 14.5
Linear solves * 64.5 44.4 34.9 39.3
A*Z * 19.2 10.7 6.6 7.7
B * Z * 80.1 55.6 45.1 53.3

Total * 205.3 135.7 104.6 119.2
Relative residuals:
Before purification * 1.49d-08 2.13d-06 3.26d-07 3.20d-08
After purification * 1.71d-10 2.43d-08 1.83d-08 8.09d-10

(A - p B) * z * 1.7 0.8 0.4 0.4

9 NUMERICAL EXPERIMENTS 30

in Table 4 when we compare T = 30 with T = 35. If it is important that
no eigenvalues are missed, the user should be cautious in the choice of T ,

and consider checking results by rerunning with an increased value of T and,
optionally, increase the number of eigenvalues requested.

In Tables 5 and 6, we present results for problem 1 with Ra = 2480 for
implicit shifts of zero and exact shifts, both with the B semi-inner product
and the standard inner product.

Table 5: Basic operations, times, and residuals for Tc for problem 1 with
Ra = 2480 and T = 20.

E semi-inner Standard inner
product product

Zero Exact Zero Exact
shifts shifts shifts shifts

Basic operations:
Factorizations 2 2 4 4
Linear solves 46 46 98 98
A * x 20 20 0 0
B * Z 127 127 25 25
(A - p E) * z 1 1 73 73
Times (secs):
Factorizations 14.3 14.3 27.9 28.0
Linear solves 24.0 25.0 56.6 52.9
A * Z 4.4 4.2 0.0 0.0
E * Z 30.9 30.0 5.9 5.9
(A - p B) * z 0.4 0.4 30.8 30.8
Total 75.7 75.7 124.8 121.3
Relative residuals:
Before purification 1.19d-08 1.19d-08 2.62d-09 9.29d-09
After purification 5.90d-10 5.90d-10 7.63d-11 4.35d-10

We see that using the B semi-inner product is more reliable than using
the standard inner product. With the standard inner product, the modified
Cayley transformation TM failed to compute the left-most eigenvalues. The
generalized Cayley transformation Tc was successful in finding the required
eigenvalues but, as in the case Rs = 1975 discussed above, T was increased
to 25 by the test for missing eigenvalues, and this increases the cost of the
computation. For this problem, using the B semi-inner product gave the
minimum number of restarts; the results were identical for zero and exact
implicit shifts. We performed additional experiments with Tc where we

9 NUMERICAL EXPERIMENTS 31

Table 6: Basic operations, times, and residuals for TM for problem 1 with
Ra = 2480 and T = 20. * denotes A1 was missed.

B semi-inner Standard inner
product product

Zero Exact Zero Exact
shifts shifts shifts shifts

Basic operations:
Factorizations
Linear solves
A(O.0) * x
B * Z
(A(O.0) - p B) * x
Times (secs):
Factorizations
Linear solves
A(O.0) * z
B * x
(A(O.0) - p B) * z

2
46
20

127
1

2 *
46 *
20 *

127 *
1 *

14.1
24.2
13.0
30.2
0.6

14.3 *
24.8 *
12.8 *
29.9 *
0.8 *

Total 83.7 84.3 * *
Relative residuals 5.90d-10 5.90d-10 * *

did not purify the starting vector VI. We found that, if the B semi-inner
product was used, the number of LU factorizations required for convergence
increased from 2 to 4 while if the standard inner product was used, the
left-most eigenpair was not found. This demonstrates the importance of the
choice of starting vector in these calculations.

All the results for problem 1 show the benefits of purifying the computed
eigenvectors.

9.2 Problem 2

The second problem is that of the flow of a Newtonian fluid past a cylinder
in a channel. The problem has 600 elements with a total of 6,398 degrees of
freedom. The first bifurcation is a Hopf bifurcation with

A1,2 = 2.6886 x 10-' f i1.0963 x 10, A3 = 2.3827.

MA42 statistics for this problem are given in Table 10. In Tables 8 and 9,
we present results for problem 2 with T = 20. The convergence tolerance
was set to 10-6. Results are given for the generalized and modified Cayley

9 NUMERICAL EXPERIMENTS

Flops for factorization
Real factor storage (Kwords)
Integer factor storage (Kwords)
Minimum in-core storage (Kwords)
Factorize time (secs)
Solve time: 1 right-hand side (secs)
Solve time: 10 right-hand sides (secs)

32

9.99 x 10'
908
155
28
5.6
0.6
1.5

transformations using implicit shifts of zero and exact shifts, both with the
B semi-inner product and the standard inner product.

For this problem, using the B semi-inner product does not improve
convergence but only adds to the computational cost. Using exact shifts
gives slightly slower convergence than implicit shifts of zero.

9.3 Problem 3

Our third test problem is that of the flow of a Newtonian fluid in a pipe with
sudden symmetric expansion. The problem has 5800 elements and 87,000
degrees of freedom. The left-most eigenvalue is real but there are several
complex eigenvalues X j such that Re(Xj) - A 1 is small. In particular,

A 1 = 1.962, X2,3 = 2.014 f i4.118 x 10-l. (9.2)

MA42 statistics for this problem are presented in Table 10. In our
experiments, we set T = 30 because we found the left-most eigenvalue
was missed if we selected a smaller value, such as T = 20. For this large
problem, while the CPU time required for each LU factorization and each
solve is not prohibitive, the additional cost of reading the element matrices
from files was found to be high. To limit the time needed to perform each
experiment involving this problem, we restricted the maximum number of
LU factorizations allowed to 10. With this restriction, the modified Cayley
transformation using the B semi-inner product and exact shifts failed to
converge. Because of this and the results of our previous experiments, we
decided to limit further investigations to using implicit shifts of zero. Results
are given in Table 1 1 .

9 NUMERICAL EXPERIMENTS 33

Table 8: Basic operations, times, and residuals for Tc for problem 2 with
r = 20.

B semi-inner Standard inner
product product

Zero Exact Zero Exact
shifts shifts shifts shifts

Basic operations:
Factorizations 4 5 4 5
Linear solves 86 107 86 107
A * Z 60 80 0 0
B * Z 222 243 23 23
(A - p B) * z 3 4 63 84
Times (secs):
Factorizations 26.4 32.6 26.3 32.5
Linear solves 49.2 65.3 48.8 65.0
A * Z 26.5 34.2 0.0 0.0
B * Z 99.2 108.6 10.2 10.2
(A - p B) * z 2.6 3.4 54.4 71.2
Total 207.5 248.0 143.6 182.8
Relative residuals:
Before purification 1.23d-03 2.03d-04 1.21d-04 1.86d-05
After purification 9.70d-06 1.51d-06 7.39d-05 1.27d-05

9 NUMERICAL EXPERIMENTS

Flops for factorization
Real factor storage (Kwords)
Integer factor storage (Kwords)
Minimum in-core storage (Kwords)
Factorize time (secs)
Solve time: 1 right-hand side (secs)
Solve time: 10 right-hand sides (secs)

34

3.54 x 109
20702
2553
40
185.2
14.0
34.0

Table 9: Basic operations, times, and residuals for TM for problem 2 with
T = 20.

B semi-inner Standard inner
product product

Zero Exact Zero Exact
shifts shifts shifts shifts

Basic operations:
Factorizations 4 5 4 5
Linear solves 86 107 86 107
A(O.0) * 2 60 80 0 0
B * x 220 243 23 23
(A(O.0) - p B) * x 3 4 63 84
Times (secs) :
Factorizations 26.0 32.7 26.6 32.7
Linear solves 48.3 60.1 48.2 60.0
A(O.0) * x 77.0 102.7 0.0 0.0
B * x 98.0 108.3 10.2 10.2
(A(O.0) - p B) * 2 4.1 5.2 82.9 109.3
Total 256.8 312.7 171.5 216.2
Relative residuals 1.61d-05 1.48d-05 1.07d-04 9.36d-08

9 NUMERICAL EXPERIMENTS 35

Table 11: Basic operations, times, and residuals for the generalized Cayley
transformation (p = 1.0) and the modified Cayley transformation (p = 0.0)
for problem 3 with T = 30. Implicit shifts of zero are used.

Tc TM
Inner product Inner product
B Standard B Standard

Basic operations:
Factorizations 3 4 3 3
Linear solves 95 126 95 95

B * x 271 33 271 33
(A@) - PB) * z 2 93 2 62
Times (secs):
Factorizations 588 782 588 586
Linear solves 1352 1736 1310 1304 .
A(P) * 2 358 0 1102 0
B * x 1634 213 1685 212
(A(P) - PB) * z 23 1124 36 1134
Total 4087 4008 4864 3352

A(P) * z 60 0 60 0

9.4

We end this section on numerical experiments with some overall comments.
Part of the motivation for this report was to numerically verify the
theoretical results presented in the paper by Meerbergen and Spence (1997).
As explained in Sections 4.2 and 5.1, care must taken to ensure that the
computed eigenvalues and eigenvectors are not contaminated by the JV or
Q components that arise in S. In exact arithmetic, this is accomplished by
using a starting vector in the range of S2.

To mitigate the influence that rounding errors might introduce, the
scheme proposed by Meerbergen and Spence is to use the B-orthogonal
Arnoldi method using one implicit shift of zero per restart and a final implicit
purification (via S) of the computed eigenvectors. However, because we use
Cayley transformations, their scheme requires us to use an implicit shift
equal to +1 per restart and to implicitly purify the computed eigenvectors
with Tc - I.

Balancing theory and numerical experiments

Here is a summary of our findings:

1. Experiments revealed that the use of the B semi-inner product
improved the results. In theory, only 6 components in the Arnoldi

9 NUMERICAL EXPERIMENTS 36

vectors can contaminate H,.

2. Using at least one implicit shift equal to +1 per restart did not prevent
H, from producing spurious eigenvalues. In theory, this cannot occur
because an implicit shift of +1 per restart should produce a H,. that
is not contaminated by G components (or n/ components that might
be present due to rounding errors). We explain why this is so below.

3. T - s implicit shifts of zero per restart gave consistently good results.
In theory, this is equivalent to performing subspace iteration with
TE-' on V, (per restart). Again, in theory, H,. could be affected by G
components in the Arnoldi vectors.

4. The implicit purification of the computed eigenvectors via Tc - I
always decreased the size of the direct residuals.

5. We did not find it necessary to apply TSI a second time to the
computed eigenvectors. Theory indicates that the purified eigenvectors
may contain h/ components arising from a Q component in the
unpurified eigenvector.

6. Our results always used a random starting vector in the range of
S2. In theory, this is not needed when using the scheme proposed
by Meerbergen and Spence (adapted for Cayley transformations),
because of items 3 and 5. We performed some experiments where the
starting vector was not purified. We found that convergence was either
significantly slower or the left-most eigenvalue was actually missed (see
Section 9.1).

7. It must be emphasized that T must be selected large enough. Except
for the possible additional storage, the cost of maintaining the
orthogonality of T Arnoldi vectors is not a factor. The cost of the
computation is dominated by the cost of factorizing and solving linear
systems with A and/or B. Increasing T increases the number of solves
which must be performed following a factorization.

Item 2 is easily the most fascinating. The explanation is subtle,
but straightforward. From Section 2, an implicit shift equal to +1 is
equivalent to orthogonalizing the columns of (Tc - I)Vr-1. B y (5 . 5) , this
is equivalent to orthogonalizing the columns of (0 - p)TsIVr-l. Thus,
if V L , denotes the updated matrix of Arnoldi vectors produced by the

10 CONCL USIONS AND FUTURE DIRECTIONS 37

IRAM, the corresponding contains no spurious eigenvalues. However,
as explained in Lehoucq and Sorensen (1996), implicit restarting occasionally
undergoes forward instability due to rounding errors. An implicit shift of +1
triggers this instability because the Cayley transformation maps the infinite
eigenvalues of (1.2) to eigenvalues at +l. Because the computed Hr has an
eigenvalue equal to +1 with an associated eigenvector y, where eFy is small,
a small Ritz estimate (see (6.1)) results. This implies that +1 is a good
approximation for an eigenvalue of TC . Forward instability results precisely
when this nearly converged eigenvalue is used as an implicit shift. Forward
instability implies that II(Tc - 1)K-l - VLIII 2 [[(TC - I)Vr-1llCM. (We
remark that this can happen even though the columns of V L 1 are orthogonal
to machine precision.)

In summary, using implicit shifts equal to +1 amplifies any G or
components that might be present due to rounding errors when using a
Cayley transformation. We remark that Meerbergen and Spence conjectured
that spurious eigenvalues could also be computed-even with their scheme.
They presented a way to check whether spurious eigenvalues were computed.
However, our check (that of using implicit shifts with small Ritz estimates)
is cheaper.

10 Conclusions and future directions

We have shown that it is possible to use the implicitly restarted Arnoldi
method combined with a generalized Cayley transformation to compute
the eigenvalues of the discretized Navier Stokes equations. Our results
suggest that although using the B semi-inner product is more expensive
than the standard inner product, it does offer advantages in terms of
reliability and, in general, gives smaller residuals for the same number of
iterations. Because of the connection with subspace iteration, we also found
it is more reliable to use zero shifts rather than exact shifts during the
implicit restarting used by the IRAM. We have experimented with using a
generalized and a modified Cayley transformation. The numerical results
for both transformations are similar although, for our examples, use of the
modified Cayley transformation was more expensive than the generalized
Cayley transformation. The accuracy of the eigenvectors computed using
the generalized Cayley transformation can be reduced, sometimes very
significantly, by purification with Tsr.

Based on our findings, we plan to incorporate the ARPACK software

11 ACKNOWLEDGEMENTS 38

package with the finite-element package ENTWIFE. In the future, we also
intend to experiment with a block version of the IRAM (Lehoucq and
Maschhoff 1997). Since it is significantly more efficient when using the linear
equation solver MA42 to solve for multiple right-hand sides, we anticipate that
this will improve the computation times, particularly for the large problems
which are of current interest to AEA Technology.

11 Acknowledgements

R.B. Lehoucq was funded by the Applied Mathematical Sciences program,
U.S. DOE, Office of Energy Research, and undertaken at Sandia National
Labs, operated for DOE under contract No. DE-AL04-94AL8500.

This study is part of a larger project to replace the eigensolvers currently
used in the finite-element package ENTWIFE by more efficient and robust
eigensolvers. We would like to thank Andrew Cliffe of AEA Technology
for his interest and for allowing us access to the ENTWIFE code. We are
also very grateful to Simon Tavener of Pennsylvania State University for
providing us with the test problems for use in this study and for helpful
discussions. We thank Gene Golub for some helpful comments at the start
of our study, Iain Duff of the Rutherford Appleton Laboratory, Andrew
Cliffe, and Simon Tavener for helpful comments on this report, and Karl
Meerbergen of Numerical Technologies for some very useful discussions.

References

K.A. Cliffe. ENTWIFE (Release 6.3) Reference Manual. Technical Report
AEAT-0823, AEA Technology, Harwell Laboratory, Oxfordshire,
England, 1996.

K.A. Cliffe, T.J. Garratt, and A. Spence. Eigenvalues of the discretized
Navier-Stokes equation with application to the detection of hopf
bifurcations. Advances in Computational Mathematics, 1, 337-356,
1993.

K.A. Cliffe, T.J. Garratt, and A. Spence. Eigenvalues of block matrices
arising from problems in fluid mechanics. SIAM J . Mutriz Analysis
and Applications, 15, 1310-1318, 1994.

REFERENCES 39

J.J. Dongarra, J. DuCroz, I.S. Duff, and S. Hammarling. A set of
A C M Transactions on Level 3 Basic Linear Algebra Subprograms.

Mathematical Software, 16(1) , 1-17, 1990.

I.S. Duff. Design features of a frontal code for solving sparse unsymmetric
linear systems out-of-core. SIAM J. Scientific and Statistical
Computing, 5 , 270-280, 1984.

I.S. Duff and J.A. Scott. MA42 - a new frontal code for solving sparse
unsymmetric systems. Technical Report RAL-TR-93-064, Rutherford
Appleton Laboratory, 1993.

I.S. Duff and J.A. Scott. A comparison of frontal software with other sparse
direct solvers. Technical Report RAL-TR-96-102, Rutherford Appleton
Laboratory, 1996a.

I.S. Duff and J.A. Scott. The design of a new frontal code for solving sparse
unsymmetric systems. ACM Transactions on Mathematical Software,
22(1) , 30-45, 19963.

T. Ericsson. A generalised eigenvalue problem and the Lancxos algorithm.
in J. Cullum and R. A. Willoughby, eds, ‘Large Scale Eigenvalue
Problems’, pp. 95-119. Elsevier Science Publications BV, 1986.

T. Ericsson and A. Ruhe. The spectral transformation Lanczos method for
the numerical solution of large sparse generalized symmetric eigenvalue
problems. Mathematics of Computation, 35, 1251-1268, 1980.

J.N. Franklin. Matrix theory. Prentice-Hall, New Jersey, 1968.

T.J. Garratt. The numerical detection of Hopf bifurcations in large systems
arising in fluid mechanics. PhD thesis, University of Bath, 1991.

T.J. Garratt, G. Moore, and A. Spence. Two methods for the numerical
detection of Hopf bifurcations. in R. Seydel, F. W. Schneider and
H. Troger, eds, ‘Bifurcation and Chaos: Analysis, Algorithms and
Applications’, pp. 119-123. Birkhauser, 1991.

A. Georgescu. Hydrodynamic stability analysis. Martinus Nijhoff, Dordrecht,
Netherlands, 1985.

Harwell Subroutine Library. A Catalogue of Subroutines (Release
Advanced Computing Department, AEA Technology, Harwell 12).

Laboratory, Oxfordshire, England, 1996.

REFERENCES 40

P. Hood. Frontal solution program for unsymmetric matrices. International
Journal on Numerical Methods in Engineering, 10, 379-400, 1976.

B.M. Irons. A frontal solution program for finite-element analysis.
International Journal on Numerical Methods in Engineering, 2 , 5-32,
1970.

R.B. Lehoucq. Truncated Q R algorithms and the numerical solution of large
scale eigenvalue problems. Preprint MCS-P648-0297, Argonne National
Laboratory, Argonne, IL, 1997.

R.B. Lehoucq and K.J. Maschhoff. Implementation of an implicitly restarted
block Arnoldi method. Preprint MCS-P649-0297, Argonne National
Laboratory, Argonne, IL, 1997.

R.B. Lehoucq and D.C. Sorensen. Deflation techniques for an implicitly
restarted Arnoldi iteration. SIAM J. Matrix Analysis and Applications,
17(4), 789-821, 1996.

R.B. Lehoucq, D.C. Sorensen, and C. Yang. ARPACK USERS GUIDE:
Solution of Large Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods. SIAM, Phildelphia, PA, 1998. To appear.

D.S. Malkus. Eigenproblems associated with the discrete LBB condition for
incompressible finite elements. International Journal for Engineering
Science, 19, 1299-1310, 1981.

K. Meerbergen and D. Roose. Matrix transformations for computing
rightmost eigenvalues of large sparse non-symmetric eigenvalue
problems. IMA Journal of Numerical Analysis, 16, 297-346, 1996.

K. Meerbergen and A. Spence. Implicitly restarted Arnoldi with purification
Mathematics of Computation, for the shift-invert transformation.

218,667-689, 1997.

B. Nour-Omid, B.N. Parlett, T. Ericsson, and P.S. Jensen. How to
implement the spectral transformation. Mathematics of Computation,
48(178), 663-673, 1987.

J.M. Ortega. Buoyancy effects in fluids. C.U.P., Cambridge, England., 1973.

B.N. Parlett. The Symmetric Eigenvalue Problem. Prentice-HalI, Englewood
Cliffs, N.J., 1980.

REFERENCES 41

B.N. Parlett and Y. S a d . Complex shift and invert strategies for real
Linear Algebra and Its Applications, 88/89(1), 575-595, matrices.

1987.

D.H. Sattinger. Transformation groups and bifurcation at multiple
eigenvalues. Bull. Amer. Math. Soc., 79, 709-711, 1973.

D.C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Analysis and Applications, 13(1), 357-385,
1992.

G.W. Stewart. Introduction to Matrix Computations. Academic Press, San
Diego, California, 1973.

D.S. Watkins. Fundamentals of Matrix Computations. Wiley, 1991.

