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ABSTRACT

The Basic Linear Algebra Subprograms for sparse matrices �Sparse BLAS� as de�ned
by the BLAS Technical Forum are a set of routines providing basic operations for
sparse matrices and vectors� A principal goal of the Sparse BLAS standard is to aid
in the development of iterative solvers for large sparse linear systems by specifying on
the one hand interfaces for a high�level description of vector and matrix operations
for the algorithm developer and on the other hand leaving enough freedom for
vendors to provide the most e�cient implementation of the underlying algorithms
for their speci�c architectures�
The Sparse BLAS standard de�nes interfaces and bindings for the three target
languages	 C
 Fortran �� and Fortran �
� We describe here our Fortran �

implementation intended as a reference model for the Sparse BLAS� We identify the
underlying complex issues of the representation and the handling of sparse matrices
and give suggestions to other implementors of how to address them�
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� Introduction

The Basic Linear Algebra Subprograms �BLAS�
 which provide essential
functionalities for dense matrix and vector operations
 are a milestone in the
history of numerical software� BLAS have been proposed for operations on dense
matrices for some time
 with the original paper for vector operations �Level � BLAS�
appearing in ���� �Lawson
 Hanson
 Kincaid and Krogh ������ This was followed
by the design of kernels for matrix�vector operations �Level � BLAS� �Dongarra

Du Croz
 Hammarling and Hanson ����� and matrix�matrix operations �Level �
BLAS� �Dongarra
 Du Croz
 Du� and Hammarling ������ The Level � BLAS have
proved to be particularly powerful for obtaining close to peak performance on many
modern architectures since they amortize the cost of obtaining data from main
memory by reusing data in the cache or high level memory�

For some years it has been realized that the BLAS standard needed updating
and a BLAS Technical Forum was coordinated and has recently published a new
standard �BLAS Technical Forum ������ Some of the main issues included in
the new standard are added functionality
 extended and mixed precision
 and
basic subprograms for sparse matrices �Sparse BLAS�� The need for the latter is
particularly important for the iterative solution of large sparse systems of linear
equations�

As in the dense case
 the Sparse BLAS enables the algorithm developer to rely on
a standardized library of frequently occurring linear algebra operations and allows
code to be written in a meta�language that uses these operations as building blocks�
Additionally
 vendors can provide implementations that are speci�cally tuned and
tested for individual machines to promote the use of e�cient and robust codes� The
development of the Sparse BLAS standard has its roots in Dodson
 Grimes and
Lewis ������ and in Du�
 Marrone
 Radicati and Vittoli ������
 the �rst proposals
for Level � and Level � kernels for the Sparse BLAS� While the �nal standard �Du�

Heroux and Pozo ����� has evolved from these proposals
 these papers are not only
of historical interest but also contain suggestions for the implementor which are
deliberately omitted in the �nal standard�

Similarly to the BLAS
 the Sparse BLAS provides operations at three levels

although it includes only a small subset of the BLAS functionality� Level � covers
basic operations on sparse and dense vectors
 Level � and Level � provide sparse
matrix multiply and sparse triangular solve on dense systems that may be vectors
�Level �� or matrices �Level ��� We emphasize that the standard is mainly intended
for sparse matrices without a special structure� This has a signi�cant in�uence on
the complexity of the internal routines for data handling� Depending on the matrix

the algorithm used
 and the underlying computing architecture
 an implementor has
to choose carefully an internal representation of the sparse matrix�

The standard de�nes the following procedure for the use of the Sparse BLAS�
First
 the given matrix data has to be passed to an initialisation routine that creates
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a handle referencing the matrix �in Fortran this handle is just an integer variable��
Afterwards
 the user can call the necessary Sparse BLAS routines with the handle
as a means to reference the data� The implementation chooses the data�dependent
algorithms internally
 without the user being involved� When the matrix is no longer
needed the matrix handle can be released and a cleanup routine is called to free any
internal storage resources associated with that handle� In the following sections
 we
describe each step of the above procedure and its implementation in Fortran �
� We
describe the functionalities in Section �� The main part of the paper is Section �
where we discuss how we organize
 create
 and use the data structures in Fortran
for the sparse data� In Sections � and 

 we discuss the Fortran interface for the
Level � and higher level BLAS respectively and consider the release of the matrix
handles in Section �� We make some general comments on our Fortran �
 interface
in Section � and illustrate our implementation with a sample program in Section ��
Finally we discuss the availability of our software in Section ��

� The Sparse BLAS functionalities

In this section
 we brie�y review the functionalities provided by the Sparse BLAS so
that we can reference them in later sections where their implementation is described�
We refer to BLAS Technical Forum ������ and Du�
 Heroux and Pozo ������ for a
more elaborate description�

��� Level � Sparse BLAS functionalities

The Level � Sparse BLAS covers basic operations on sparse and dense vectors� The
functionalities provided are a sparse dot product �USDOT�
 a sparse vector update
�USAXPY�
 sparse gather operations �USGA
 USGZ�
 and a sparse scatter function
�USSC��

��� Level � Sparse BLAS functionalities

The Level � Sparse BLAS provides functions for sparse matrices operating on dense
vectors� The functionalities available are matrix�vector multiplication with a sparse
matrix A or its transpose �USMV� and the solution of sparse triangular systems
�USSV��

��� Level � Sparse BLAS functionalities

The Level � Sparse BLAS provides kernels for sparse matrices operating on dense
matrices� The functionalities are similar to those of Level � and consist of matrix�
matrix multiplication �USMM� and solution of sparse triangular systems with several
right�hand sides �USSM��
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��� Routines for the creation of sparse matrices

The routines for the creation of a sparse matrix and its associated handle are listed
in Table ���� The Sparse BLAS can deal with general sparse matrices and with
sparse block matrices with a �xed or variable block size� After the creation of the
corresponding handle
 the entries must be input using the appropriate insertion
routines� The construction is �nished by calling USCR�END�

USCR�BEGIN begin point�entry construction
USCR�BLOCK�BEGIN begin block�entry construction
USCR�VARIABLE�BLOCK�BEGIN begin variable block�entry construction

USCR�INSERT�ENTRY add point�entry
USCR�INSERT�ENTRIES add list of point�entries
USCR�INSERT�COL add a compressed column
USCR�INSERT�ROW add a compressed row
USCR�INSERT�CLIQUE add a dense matrix clique
USCR�INSERT�BLOCK add a block entry

USCR�END end construction

USSP set matrix property
USGP get�test for matrix property

USDS release matrix handle

Table ���	 Sparse BLAS	 operations for the handling of sparse matrices�

Furthermore
 we can specify via USSP various properties of the matrix in order
to assist possible optimization of storage and computation� As an example
 we
mention blas�lower�symmetric which indicates that the matrix is symmetric and
only the lower half of the entries is given during construction� For a complete list
of the Sparse BLAS parameters
 we refer to BLAS Technical Forum ������ and
Du�
 Heroux and Pozo ������� Calls to USSP should be made after a call to the
BEGIN routine but before the �rst call to an INSERT routine for the same handle� A
complementary routine
 USGP
 can be used to obtain information on the properties
of a sparse matrix�

� Handle creation and matrix data initialisation

In this section
 we discuss the internal data structures and manipulation related to
the creation of a matrix handle that will be used to represent the sparse matrix
in the later calls to the Sparse BLAS� From the implementor�s point of view
 the
choice of the internal data structures is perhaps the most important part of the
implementation as it will in�uence the design
 implementation and performance of
all subsequent operations�
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Conceptually
 the Sparse BLAS distinguishes between three di�erent types of
sparse matrices� ��� ordinary sparse matrices
 ��� sparse matrices with a regular
block structure
 and ��� sparse matrices with a variable block structure� This
distinction will allow a vendor to provide optimised algorithms for blocked data�
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The actual creation of a sparse matrix with its handle consists of three steps and
involves the routines listed in Table ����

�� An internal data structure is initialized by calling one of the USCR�BEGIN

routines�

�� The matrix data is passed to the internal data structure by one or more calls
to USCR�INSERT routines�

�� The construction is completed by calling the USCR�END routine�

This last step of the creation procedure needs more elaboration� Intentionally

the user need not know how many matrix entries will be input but can simply pass
the data to the Sparse BLAS using the insert routines� Thus
 it is not possible
a priori to predict how much memory should be allocated� Consequently
 the
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Sparse BLAS must use dynamic memory allocation and a dynamic data structure
for the construction phase of the matrix� We use linked lists which are augmented
dynamically when new matrix entries are added� The nodes of the lists contain the
matrix entries together with their indices and a pointer to the next list node� In
order to limit the size of the list
 we keep the matrix entries grouped together in the
same way and in the same order as the user passes them to the Sparse BLAS� If a
single matrix entry is inserted
 the list node contains only this single entry� if a row

a column
 or a block is inserted
 a di�erent list is used and the list node contains all
entries of the row
 the column
 or the block
 respectively� In order to identify which
kind of data is associated with each node
 we use di�erent pointers for row
 column

and block data
 respectively� However
 using this structure for the Level � and
Level � algorithms would imply a serious performance loss because of the amount of
indirect addressing involved� At the call to USCR�END
 all the data for the matrix is
known� We now allocate one contiguous block of memory with appropriate size and
copy the data into a static data structure for better performance� Additionally
 it
is possible to sort the matrix entries during this copying process so that the matrix
data is held by rows or columns if this is bene�cial for the performance of the Level �
and Level � algorithms�

Before we describe the layout of the static internal storage schemes
 we discuss
alternative approaches to handling the dynamic memory allocation� Generally
 it
is important to limit memory fragmentation by allocating storage by blocks� We
respect this by allocating the space for matrix rows
 columns or blocks �in one shot��
Another possibility is to preallocate a certain amount of memory and add the matrix
entries as long as space is available� more space can be allocated when it is needed�
This preallocation allows us to allocate contiguous memory blocks independently
from the way a user inserts the matrix data�

We now present the details of our internal storage schemes	

�� Ordinary sparse matrices consisting of point entries are stored in coordinate
format �COO�
 that is the entries of the matrix are stored along with their
corresponding row and column indices� This requires the three arrays	

� VAL � a real or complex array containing the entries of A
 in any order�

� INDX � an integer array containing the corresponding row indices of the
entries of A�

� JNDX � an integer array containing the corresponding column indices of
the entries of A�

For example
 a representation of the matrix A in equation ��� in COO format
could be	

VAL � � �� 
� �� �� �� 
� �� �� �� �� �� �� 

 �� ��
INDX � � � 
 � � � 
 � � � � � � 
 � ��
JNDX � � � � � � � � � � � � � � 
 � ��






�� Systems with a regular block structure
 where each entry is an LB�by�LB dense
block
 are stored internally in block coordinate format �BCO�� Systems of this
form typically arise
 for example
 when there are multiple unknowns per grid
point of a discretized partial di�erential equation� Typically LB is a small
number
 less than twenty
 determined by the number of quantities measured
at each grid point
 for example velocity
 pressure
 temperature
 etc� The BCO
format is de�ned similarly to the COO format� Entries are stored block�wise
together with their block row and block column indices� This again requires
three arrays�

� VAL � a real or complex array containing the entries of the matrix

grouped and stored as dense blocks�

� BINDX � an integer array containing the block row indices�

� BJNDX � an integer array containing the block column indices�

For example
 a representation of the matrix B in equation ��� in BCO format
could be	

VAL � � ��� ��� ��� ��� �
� �
� ��� ��� ��� ���
�� ��� �
� �
� ��� ��� 
�� ��� 
�� �� ��

BINDX � � �� �� �� �� � ��
BJNDX � � �� �� �� �� � ��

Note that we choose the block internal storage to be in �Fortran style�
 that is
in column major order�

�� Systems with an irregular block structure are stored internally in the Variable
Block Row format �VBR�� VBR stores the nonzero block entries in each of the
block rows as a sparse vector of dense matrices� The matrix is not assumed
to have uniform block partitioning
 that is
 the blocks may vary in size� The
VBR data structure is de�ned as follows� Consider an m�by�k sparse matrix
along with a row partition Pr � fi�� i�� � � � � imb��

g and column partition Pc �
fj�� j�� � � � � jkb��g such that i� � j� � �
 imb��

� m��
 jkb�� � k��
 ip � ip��
for p � �� � � � �mb
 and jq � jq�� for q � �� � � � � kb� The matrix C in equation ���
is an example of a block matrix where the blocks Cij are de�ned according
to the row and column partition shown� The block entries are stored block
row by block row and each block entry is stored as a dense matrix in standard
column major form� Six arrays are associated with this form of storage�

� VAL � a real or complex array containing the block entries of C� Each
block entry is a dense rectangular matrix stored column by column�

� INDPTR � an integer array
 the i�th entry of INDPTR points to the
location in VAL of the ��
�� entry of the i�th block entry�
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� BINDX � An integer array containing the block column indices of the
nonzero blocks of C�

� RPNTR � An integer array of length mb�� containing the row partition
Pr of C� RPNTR�i� is set to the row index of the �rst row in the i�th
block row�

� CPNTR � An integer array of length kb�� containing the column partition
Pc of C� CPNTR�j� is set to the column index of the �rst column in the
j�th block column�

� BPNTR � An integer array of length mb such that BPNTRB �i� points
to the location in BINDX of the �rst nonzero block entry of block row
i� If the i�th block row contains only zeros then set BPNTRB�i � �� �
BPNTRB �i��

For example
 the matrix C in equation ��� is stored in VBR format as follows	

VAL � ��� �� �� 
� �� �� ��� �� �� ��� �� ��
��� �� �� �� �� �� �� �� �� �� �� ��
�� �� 
� ��� �� �� �� �� �� �� ��� ��
�� �� ��� �� �� �� �� �� ��� �� ��
�
� �� �� �� ��

INDPTR � ��� 
� �� ��� ��� ��� �
� ��� ��� ��� �
� ���
��� 
� ��

BINDX � ��� �� 
� �� �� �� �� �� �� �� �� ��

 ��

RPNTR � ��� �� �� �� ��� �� ��
CPNTR � ��� �� �� �� ��� �� ��
BPNTR � ��� �� �� ��� ��� �
 ��

We emphasize that our choice of the internal storage schemes is only one
among several possibilities� The coordinate representation is very simple and is

for example
 used as the basis for the Matrix Market sparse matrix storage format�
However
 the drawback of both the COO and the BCO storage format consists of
the fact that the matrix entries are not necessarily ordered
 which can degrade the
e�ciency of the Level � and Level � algorithms� Alternative matrix formats include
the storage of the matrix entries by compressed columns or rows� Speci�cally
 the
Compressed Sparse Column �CSC� storage scheme is used for the matrices of the
Harwell�Boeing collection �Du�
 Grimes and Lewis ����� and forms also the basis of
the Rutherford�Boeing format �Du�
 Grimes and Lewis ������ It is up to the vendor
to choose the most appropriate representation�

We now present the fundamental datatype that accommodates all the data
belonging to a sparse matrix� Its design is derived from Du�
 Marrone
 Radicati
and Vittoli ������� When USCR�END is called
 an instantiation of this datatype is
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created that will then be referenced by its handle in the calls to the Level � and
Level � routines�

TYPE DSPMAT

INTEGER �� M�K

CHARACTER�� �� FIDA

CHARACTER��� �� DESCRA

INTEGER� DIMENSION���� �� INFOA

REAL�KIND	DP�� POINTER� DIMENSION��� �� VALUES

INTEGER� POINTER� DIMENSION��� �� IA��IA
�PB�PE�BP��BP


END TYPE DSPMAT

�This is the datatype for a matrix with real entries in double precision� The other
datatype formats are analogous� Here
 the Fortran KIND parameters sp and dp

specifying single and double precision are selected as SELECTED�REAL�KIND����
�
and SELECTED�REAL�KIND������
�
 respectively��

Since the meaning of most of the components is already obvious from the above
discussion of the internal storage formats
 we give only short general remarks on
them�

� The integers M and K represent the dimensions of the sparse matrix�

� FIDA holds a string representation of the matrix format
 for example
 �COO��

� DESCRA stores possible matrix properties such as symmetry�

� INFOA holds complementary information on the matrix such as the number of
nonzero entries�

� The array VALUES keeps the values of the matrix entries� The way in which
these entries are stored can be deduced from the following character and integer
arrays�

� The arrays IA��IA
�PB�PE�BP��BP
 are used to provide the necessary
information on the sparsity structure of the matrix� The pointer arrays
PB�PE�BP��BP
 are only used for block matrices� Note that we use generic
array names
 since their use depends on the matrix format� For example
 in
COO format
 the arrays IA� and IA
 represent INDX and JNDX 
 while in
VBR format
 they represent BINDX and INDPTR�

We decided to group the administration of all handle�matrix pairs according
to their �oating�point data type
 that is
 we keep a separate list of all valid matrix
handles for each of the �ve �oating�point data types supported by the Sparse BLAS�
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� Level � subroutines

The storage of sparse vectors is much less complicated than that for sparse matrices
and greatly facilitates the implementation of the Level � routines�

Generally
 only the nonzero entries of a sparse vector x will be stored which leads
to a representation of x by a pair of one�dimensional arrays
 one for the entries and
the other one for their indices� For example
 the sparse vector

x � ����� �� ���� ���� ��H

can be represented as
VAL � ����� ���� ����

INDX � ��� �� ���
���

For the implementation of the Level � Sparse BLAS functionalities as described
in Section ���
 we generally do not assume that the entries of sparse vectors are
ordered� By ordering and grouping the sparse vector according to its indices
 it can
be ensured that the dense vector involved in the Level � operations is accessed in
blocks and cache reuse is enhanced�

One peculiarity of the Level � routines
 in contrast to the sparse matrix
operations of Level � and Level �
 is that the sparse vector operations do not return
an error �ag� Level � and Level � routines have to provide some checking of the
input arguments
 for example matching matrix dimensions
 and can detect at least
some of these errors and signal them to the user by setting an error �ag� Because
of the simplicity
 the representation of sparse vectors is left to the user who is thus
responsible for ensuring the correctness of the data� Furthermore
 the overhead for
checking in the Level � and Level � operations is less important because of their
greater granularity�

� Level � and Level � subroutines

The discussion in Section � on the di�erent internal storage schemes shows that a
di�erent Level � and Level � routine for the Sparse BLAS must be implemented
for each scheme� Hidden from the user who uses the matrix handle in a generic
subroutine call
 the software chooses the appropriate routine according to the type
of data� We discuss these issues in the following sections�

��� Product of a sparse matrix with one or many dense

vectors

In this section
 we discuss the implementation of the multiplication of a sparse
matrix with a dense vector or a dense matrix� We concentrate on the matrix�vector
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multiplication
 since in our code
 the multiplication of a sparse matrix and a dense
matrix is performed columnwise� Thus
 we discuss the realization of

y � �Ax � y�

and

y � �ATx � y�

Our implementation uses the generic functions of Fortran �
 extensively� We provide
the following interface for the support of the di�erent types

interface usmv

module procedure susmv

module procedure dusmv

module procedure cusmv

module procedure zusmv

module procedure iusmv

end interface

with an implementation for matrices in double precision as follows	

subroutine dusmv�a� x� y� ierr� transa� alpha�

integer� intent�in� �� a

real�kind	dp�� dimension���� intent�in� �� x

real�kind	dp�� dimension���� intent�inout� �� y

integer� intent�out� �� ierr

integer� intent�in�� optional �� transa

real�kind	dp�� intent�in�� optional �� alpha

where

� a denotes the matrix handle�

� x
 y denote the dense vectors�

� ierr is used as an error �ag�

� transa allows the optional use of the transposed sparse matrix�

� alpha is an optional scalar factor�

In the case of �COO� storage
 we perform the multiplication entry by entry

whereas for both regular block matrices in �BCO� and irregular block matrices in
�VBR� format
 we perform a dense matrix�vector multiplication with the subblocks�

We remark that
 even if we perform the multiplication of a sparse matrix and
a dense matrix column by column
 there can be more e�cient ways of doing this�
Depending on the size of the dense matrix
 a vendor could use blocking also on the
dense matrix to gain performance�
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��� Solution of a sparse triangular system with one or many

dense right�hand sides

In this section
 we show the implementation of the solution of a sparse triangular
system with a dense vector or a dense matrix� As in Section 
��
 we focus on the
case of a single right�hand side	

x � � T��x�

and

x � � T�Tx�

Similarly to the multiplication routines
 we provide a generic interface for the
support of the di�erent types in a similar way to that discussed for usmv in the
previous section� The implementation of the di�erent �oating�point data types
 for
example dussv
 is given by the following header	

subroutine dussv�a�x�ierr�transa�alpha�

integer� intent�in� �� a

real�kind	dp�� intent�inout� �� x���

integer� intent�out� �� ierr

integer� intent�in�� optional �� transa

real�kind	dp�� intent�in�� optional �� alpha

where

� a denotes the matrix handle�

� x denotes the dense vector�

� ierr is used as an error �ag�

� transa allows optionally the use of the transposed sparse matrix�

� alpha is an optional scalar factor�

For block matrices in either �BCO� or �VBR� format
 the triangular solve
is blocked and uses dense matrix kernels for matrix�vector multiplication and
triangular solves on the subblocks�

In the case of a simultaneous triangular solve for more than one right�hand side

we have chosen internally to perform the solve separately on each of them� However

the remark given at the end of Section 
�� applies here
 too� Blocking should be
applied to the right�hand side if the matrix is big enough and o�ers enough potential
for e�cient dense matrix kernels�

��



� Releasing matrix handles

Since the matrix handles are created dynamically
 we have to be careful with our
memory management� In particular
 we will want to return allocated memory to
the system when we do not need it any more� The Sparse BLAS provides a routine
for releasing a created matrix handle and freeing all associated memory�

The Fortran �
 binding of the handle release routine is	

subroutine usds�a�ierr�

integer� intent�in� �� a

integer� intent�out� �� ierr

Here
 a denotes the matrix handle to be released and ierr a variable to signal
possible internal errors occurring on the attempt to release the handle�

We have already remarked in Section � that we use di�erent internal data
structures for the handle initialisation and the Level � and Level � routines� The
linked lists used in the handle initialisation procedure can already be deallocated
when USCR�END is called� The call to USDS will then result in a deallocation of the
memory associated with the fundamental internal datatype shown at the end of
Section ��

When a matrix handle is released
 one can either re�use the handle
 that is
 its
integer value
 for the next matrix that will be created
 or prevent it from being used
again� We decided to assign a new handle to each created matrix and not to re�use
the released handles� This ensures that matrices are not confused by accident
 as no
matrix handle can represent more than one matrix simultaneously in the context of
the program�

� Some remarks on using Fortran ��

Fortran is widely recognized as very suitable for numerical computation� Fortran �

includes Fortran �� as a subset but additionally includes some useful features of
other modern programming languages�

In our implementation
 we bene�t from the following features of Fortran �
	

�� Modules allow the code to be structured by grouping together related data
and algorithms� An example is given by the Sparse BLAS module itself as it
is used by the test program described in Section ��

�� Generic interfaces as shown in Sections 
�� and 
�� allow the same subroutine
call to be used for each of the 
 �oating�point data types supported�

�� Dynamic memory allocation allows us to create the linked lists for matrix entry
management
 as described in Sections � and ��

��



�� Vector operation facilities instead of loops are employed wherever possible in
the Level � and Level � algorithms from Sections 
�� and 
��
 in particular for
block matrix algorithms�


� Numerical precision is consistently de�ned via the KIND parameters sp and
dp for single and double precision
 respectively� These are set in the module
blas sparse� We gave an example in the de�nition of the datatype DSPMAT

at the end of Section ��

	 A sample program

In this section
 we give an example of how to use the Sparse BLAS and illustrate
all steps from the creation of the matrix handle for the sample matrix T and the
calls to Level � and Level � routines up to the release of the handle� It is worth
mentioning that the whole Sparse BLAS is available as a Fortran �
 module which
has to be included by the statement use blas sparse as shown in the fourth line of
the source code� This module contains all Sparse BLAS routines and prede�ned
named constants like the matrix properties mentioned in Section ����

program test

�

������������������ Use the Sparse BLAS module �����������������������

use blas�sparse

�

������������������ The test matrix data ���������������������������

�

� � � � � � ��

� � � � � ��

� T	 � � � ��

� � � �

� � ��

�

real�kind	dp��dimension������ T�VAL	����dp

integer�dimension������ T�indx	������
���
�����
�������
������

integer�dimension������ T�jndx	����
�
������������������������

integer�parameter�� T�m	�� T�n	�� T�nz	��

real�kind	dp��� Tx��� 	�����������
���������

�

������������������ Declaration of variables ������������������������

real�kind	dp��dimension����allocatable�� x� y� z

real�kind	dp��dimension������allocatable�� dense�B�dense�C�dense�D

integer�� i�prpty�a�ierr

��



�

prpty 	 blas�upper�triangular � blas�one�base

open�UNIT	��FILE	�output��STATUS	�new��

�

������������������ Begin point entry construction ������������������

call duscr�begin�T�m� T�n� a� istat�

�

������������������ Insert all entries �������������������������������

call uscr�insert�entries�a� T�VAL� T�indx� T�jndx� istat�

�

������������������ Set matrix properties ����������������������������

call ussp�a� prpty�istat�

�

������������������ End of construction �����������������������������

call uscr�end�a� istat�

�

allocate�x����y����z�����

dense�B�size�y�����dense�C�size�x������

dense�D�size�x�����STAT	ierr�

if�ierr�ne��� then

write�UNIT	�� FMT	��A��� �Allocation error�

close�UNIT	��

stop

endif

do i	�� size�x�

x�i� 	 dble�i�

end do

y	��

z 	 x

do i 	 �� �

dense�B��� i� 	 x

dense�C��� i� 	 ��

dense�D��� i� 	 Tx

end do

�

������������������ Matrix�Vector product ���������������������������

write�UNIT	�� FMT	��A��� �� Test of MV multiply ��

call usmv�a� x� y� istat�

write�UNIT	�� FMT	��A��� �Error � �

write�UNIT	�� FMT	��D�
����� maxval�abs�y�Tx��

�

��



������������������ Matrix�Matrix product ����������������������������

write�UNIT	�� FMT	��A��� �� Test of MM multiply ��

call usmm�a� dense�B� dense�C� istat�

write�UNIT	�� FMT	��A��� �Error� �

write�UNIT	�� FMT	��D�
����� maxval�abs�dense�C�dense�D��

�

������������������ Triangular Vector solve ��������������������������

write�UNIT	�� FMT	��A��� �� Test of tri� vec� solver ��

call ussv�a� y� istat�

write�UNIT	�� FMT	��A��� �Error � �

write�UNIT	�� FMT	��D�
����� maxval�abs�y�x��

�

������������������ Triangular Matrix solve ��������������������������

write�UNIT	�� FMT	��A��� �� Test of tri� mat� solver ��

call ussm�a� dense�C� istat�

write�UNIT	�� FMT	��A��� �Error � �

write�UNIT	�� FMT	��D�
����� maxval�abs�dense�C�dense�B��

�

������������������� Deallocation ������������������������������������

deallocate�x�y�z�dense�B�dense�C�dense�D�

call usds�a�istat�

close�UNIT	��

�

end program test

� Software availability and 
nal remarks

	�� Download location

The software that we have described in this report conforms with the Sparse
BLAS standard de�ned by the BLAS Technical forum �BLAS Technical
Forum ����
 Du�
 Heroux and Pozo ������ The code is available from
http���www�cerfacs�fr��voemel�SparseBLAS�SparseBLAS�html�

	�� Code generation

The Sparse BLAS provides routines for integer computations and real and complex

variables in single and double precision� Because of their similarity
 and also to
allow easier maintenance of the code
 the di�erent instantiations of a routine are
generated from a single source by shell preprocessing� Further instructions on the
code generation and compilation are enclosed with the software�

�




	�� Final remarks

Aspects of our Fortran �
 implementation have also been described in the two
Technical Reports
 Du� and V�omel ������ and Du�
 V�omel and Youan �������

Our software is a reference implementation� Vendors may supply optimized
versions which exploit special features of high performance computing architectures�
Suggestions for such optimizations have been given in the relevant sections of this
paper�

More sophisticated optimizations have been out of the scope of this work� As an
example
 we point out the Sparsity project at the University of California in Berkeley
which provides kernels for sparse matrix�vector multiplication that are automatically
tuned for a given matrix on a given machine �Im ����
 Im and Yelick ����
 Im and
Yelick ������ The major techniques which are investigated there consist of register
and cache blocking as well as the careful design of the underlying sparse matrix data
structures�

Both the C and the Fortran �� reference implementation are still under
development and user guides are planned �Heroux and Pozo ������ The internal
report �Remington and Pozo ����� is currently the only existing reference�
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