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ABSTRACT

In recent years a number of solvers for the direct solution of large sparse, symmetric
linear systems of equations have been developed. These include solvers that are designed
for the solution of positive-definite systems as well as those that are principally intended
for solving indefinite problems. The available choice can make it difficult for users to
know which solver is the most appropriate for their applications. In this study, we use
performance profiles as a tool for evaluating and comparing the performance of serial
sparse direct solvers on an extensive set of symmetric test problems taken from a range of
practical applications.
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1 Introduction

Solving linear systems of equations lies at the heart of many problems in computational
science and engineering. In many cases, particularly when discretizing continuous
problems, the system is large and the associated matrix A is sparse. Furthermore, for
many applications, the matrix is symmetric; sometimes, such as in some finite-element
applications, A is positive definite, while in other cases, including constrained optimization
and problems involving conservation laws, it is indefinite.

A direct method for solving a sparse linear system Ax = b involves the explicit
factorization of the system matrix A (or, more usually, a permutation of A) into the
product of lower and upper triangular matrices L and U . In the symmetric case, for
positive definite problems U = LT (Cholesky factorization) or, more generally, U = DLT ,
where D is a block diagonal matrix with 1 × 1 and 2 × 2 blocks. Forward elimination
followed by backward substitution completes the solution process for each given right-
hand side b. Direct methods are important because of their generality and robustness.
Indeed, for the ‘tough’ linear systems arising from some applications, they are currently
the only feasible solution methods. In many other cases, direct methods are often the
method of choice because finding and computing a good preconditioner for an iterative
method can be computationally more expensive than using a direct method. Furthermore,
direct methods provide an effective means of solving multiple systems with the same A
but different right-hand sides b because the factorization needs only to be performed once.

Since the early 1990s, many new algorithms and a number of new software packages
that are designed for the efficient solution of sparse symmetric systems have been
developed. Because a potential user may be bewildered by such choice, our intention
in this paper is to compare the alternatives on a significant set of large test examples from
many different application areas, and, as far as is possible, to make recommendations
concerning the efficacy of the various algorithms and packages. This study is an extension
of a recent comparison by Gould and Scott (2004) of sparse symmetric direct solvers in the
mathematical software library HSL (HSL, 2004). This earlier study concluded that the
best general-purpose HSL package for solving sparse symmetric systems is currently MA57

(Duff, 2004). Thus the only HSL direct solver included here is MA57, but the reader should
be aware that, for some classes of problems, other HSL codes may be more appropriate.
For full details and results for the HSL symmetric solvers, the reader is referred to Gould
and Scott (2003).

For ease of reference, all the sparse solvers used in this study are listed in Table 1.1.
The release date of the version of the code used in our experiments is given. As far as
we are aware, in each case, the most up-to-date version has been used. The codes will be
discussed in more detail in Sections 2 and 3. We remark that a number of the packages
offer versions for complex symmetric and/or Hermitian matrices, and some can be used for
unsymmetric systems. Our experiments are limited to real symmetric matrices. Some of
the packages have parallel versions (and may even have been written primarily as parallel
codes); this study considers only serial codes and serial versions of parallel solvers.
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Code Date/version Language Authors

BCSLIB-EXT 11.2001, v4.1 F77 The Boeing Company

MA57 02.2005, v3.0.0 F77/F90 I.S. Duff, HSL

MUMPS 11.2003, v4.3.2 F90 P.R. Amestoy, I.S. Duff,
J.-Y. L’Excellent, and J. Koster

Oblio 12.2003, v0.7 C++ F. Dobrian and A. Pothen

PARDISO 04.2005, v1.2.3 F77 & C O. Schenk and K. Gärtner

SPOOLES 1999, v2.2 C C. Ashcraft and R. Grimes

SPRSBLKLLT 1997, v0.5 F77 E.G. Ng and B.W. Peyton

TAUCS 08.2003, v2.2 C S. Toledo

UMFPACK 04.2003, v4.1 C T. Davis

WSMP 2004, V 4.4.30 F90 & C A. Gupta and M. Joshi, IBM

Table 1.1: Solvers used in our numerical experiments. A ‘&’ indicates both languages are
used in the source code; ‘F77/F90’ indicates there is a F77 version and a F90 version.

Some of the solvers are freely available to academics while to use others it is necessary
to purchase a licence. This information is provided in Table 1.2. For each code a webpage
address is also given (or, if no webpage is currently available, an email contact is provided
that may be used to obtain further information). Note that for non academic users, the
conditions for obtaining and using a solver varies between the different packages and we
advise interested users to refer to the webpage or contact the code’s authors directly for
full details.

2 An introduction to sparse symmetric solvers

Sparse direct methods solve systems of linear equations by factorizing the coefficient matrix
A, generally employing graph models to try and minimize both the storage needed and
work performed. Sparse direct solvers have a number of distinct phases. Although the
exact subdivision depends on the algorithm and software being used, a common subdivision
is given by:

1. An ordering phase that exploits structure.

2. An analyse phase (which is sometimes referred to as the symbolic factorization step)
that analyses the matrix structure to (optionally) determine a pivot sequence and
data structures for efficient factorization. A good pivot sequence significantly reduces
both memory requirements and the number of floating-point operations required.
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Code Free to Webpage / email contact
academics

BCSLIB-EXT × www.boeing.com/phantom/BCSLIB-EXT/index.html

MA57 × www.cse.clrc.ac.uk/nag/hsl

MUMPS
√

www.enseeiht.fr/lima/apo/MUMPS/

Oblio
√

dobrian@cs.odu.edu or pothen@cs.odu.edu

PARDISO
√

www.computational.unibas.ch/cs/scicomp/software/pardiso

SPOOLES
√

www.netlib.org/linalg/spooles/spooles.2.2.html

SPRSBLKLLT
√

EGNg@lbl.gov

TAUCS
√

www.cs.tau.ac.il/∼stoledo/taucs/

UMFPACK
√

www.cise.ufl.edu/research/sparse/umfpack/

WSMP
√

www-users.cs.umn.edu/∼agupta/wsmp.html

Table 1.2: Availability and contact details of the solvers used in our numerical experiments.

3. A factorization phase that uses the pivot sequence to factorize the matrix (some
codes scale the matrix prior to the factorization).

4. A solve phase that performs forward elimination followed by back substitution using
the stored factors. The solve phase may include iterative refinement.

Of the different phases, in a serial implementation, the factorization is usually the most
time-consuming, while the solve phase is generally significantly faster. In many software
packages, the first two phases are combined into a single user-callable subprogram. An
introduction to sparse direct solvers is given in the book by Duff, Erisman and Reid (1986).
Another useful reference for symmetric positive definite systems is George and Liu (1981).

2.1 Ordering choices

There are a number of different approaches to the problem of obtaining a good pivot
sequence. An important class of ordering methods is based upon the minimum degree
(MD) algorithm, first proposed by Tinney and Walker (1967). Variants include the
multiple minimum degree (MMD) algorithm (Liu 1985) and the approximate minimum
degree (AMD) algorithm (Amestoy, Davis and Duff, 1996, 2004). Other methods are
based on nested dissection (ND), a term introduced by George (1973). Many of the
recent packages include an explicit interface to the multilevel nested-dissection routine
METIS NodeND (or a variant of it) from the METIS package of Karypis and Kumar (1998,
1999). Other orderings include multisection (Ashcraft and Liu, 1998) and orderings based
on local minimum fill (Tinney and Walker, 1967). The ordering options offered by the
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codes in this study are summarized in Table 2.1. An entry marked with ∗ indicates the
default (or recommended) ordering. Note that for MUMPS, the default is dependent on
the size of the linear system and the packages SPOOLES and WSMP perform two orderings
by default and select the better. By default, the latest version of MA57 automatically
chooses whether to use AMD or METIS depending on the order of the system and the
characteristics of the sparsity pattern; in some cases it will perform both orderings and
use the one with the smallest predicted level of fill. A ‘

√
’in the column headed ‘User’

Code Ordering options Factorization
MD AMD MMD ND METIS MS MF User Algorithm

BCSLIB-EXT × × √ × √
∗ × × √

Multifrontal

MA57
√ √

∗ × × √
∗ × × √

Multifrontal

MUMPS
√ √

∗ × × √
∗

√ √ √
Multifrontal

Oblio × × √ × √
∗ × × √

Left-looking,
right-looking,
multifrontal

PARDISO × × × × √
∗ × × √

Left-right
looking

SPOOLES × × √ √
∗ × √

∗ × √
Left-looking

SPRSBLKLLT × × √
∗ × × × × √

Left-looking

TAUCS
√ √ √ × √

∗ × × √
Left-looking,
multifrontal

UMFPACK × √
∗ × × × × × × Unsymmetric

multifrontal

WSMP × × × √
∗ × × √

∗
√

Multifrontal

Table 2.1: Ordering options and factorization algorithm for the solvers used in our
numerical experiments. MD = minimum degree; AMD = approximate minimum degree,
MMD = multiple minimum degree; ND = nested dissection; METIS = explicit interface
to METIS NodeND (or variant of it); MS = multisection; MF = minimum fill). ∗ indicates
the default.

indicates the user may supply his or her own ordering. We note that if the user wishes
to specify the ordering for the package SPRSBLKLLT, this can only be done if the matrix
is preordered before entry; the other packages perform any necessary permutations on
the input matrix using the supplied ordering. Packages that offer orderings that are not
included elsewhere in the table have a ‘

√
’ in the ‘Other’ column; further details of these

are given in Section 3.
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2.2 Factorization algorithms

Following the analyse phase, the factorization can be performed in many different ways,
depending on the order in which matrix entries are accessed and/or updated. Possible
variants include left-looking, right-looking, and multifrontal algorithms. The (supernodal)
right-looking variant computes a (block) row and column at each step and uses them
to immediately update all rows and columns in the part of the matrix that has not
yet been factored. In the (supernodal) left-looking variant, the updates are not applied
immediately; instead, before a (block) column k is eliminated, all updates from previous
columns of L are applied together to the (block) column k of A. Hybrid left-right looking
algorithms have also been proposed (see Schenk, Gärtner and Fichtner, 2000). The
multifrontal method was first introduced by Duff and Reid (1983). It accumulates the
updates; they are propagated from a descendant column j to an ancestor column k via
all intermediate nodes on the elimination tree path from j to k. Further details of these
variants may be found, for example, in the survey paper of Heath, Ng and Peyton (1991)
and the book by Dongarra, Duff, Sorsensen and van der Vorst (1998). A useful overview
of the multifrontal method is given by Liu (1992). The algorithm used by each of the
codes involved in our tests is given in Table 2.1. Note that a number of the solvers (in
particular, Oblio and TAUCS) offer more than one algorithm.

2.3 Pivoting for stability

For symmetric matrices that are positive definite, the pivot sequence may be chosen using
the sparsity pattern alone, and so the analyse phase involves no computation on real
numbers and the factorization phase can use the chosen sequence without modification.
Moreover, the data structures are determined by the analyse phase and can be static
throughout the factorization phase. For symmetric indefinite problems, using the pivot
sequence from the analyse phase may be unstable or impossible because of (near) zero
diagonal pivots. The disadvantage of using standard partial pivoting for stability is that
symmetry is destroyed. Different codes try to address this problem in different ways.
The simplest approach is to terminate the computation if a zero (or very small) pivot is
encountered. Alternatively, the computation may be continued by perturbing near zero
pivots. This allows the data structures chosen by the analyse phase to be used but may
lead to large growth in the entries of the factors. The hope is that accuracy can be restored
through the use of iterative refinement but, with no numerical pivoting, these simple static
approaches are only suitable for a restricted set of indefinite problems.

A larger set of problems may be solved by selecting only numerically stable 1×1 pivots
from the diagonal, that is, a pivot on the diagonal is only chosen if its magnitude is at
least u times the largest entry in absolute value in its column, where 0 < u ≤ 1 is a
threshold parameter set by the user. Potentially unstable pivots (those that do not satisfy
the threshold test) will be delayed, and the data structures chosen during the analyse
phase may have to be modified. This approach is used by the symmetric version of MUMPS.
Success is still not guaranteed because if all the remaining (uneliminated) diagonal entries
are zero the computation cannot continue.

To preserve symmetry and maintain stability, pivots may be generalised to 2×2 blocks.
Again, different packages use different 2× 2 pivoting strategies. The approach of PARDSIO
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is to use Bunch-Kaufmann pivoting (Bunch and Kaufmann, 1977) on the dense diagonal
blocks that correspond to supernodes and, if a zero (or nearly zero) pivot occurs, it is
perturbed. Since pivots are only chosen from within the supernodal block, numerical
stability is not guaranteed but because there is no searching or dynamic reordering during
the factorization, it is anticipated that this static pivoting strategy will have a substantial
performance advantage over more robust approaches that search for a stable pivot and
force the delay of any that are unstable. The stable approach is followed by MA57, which
uses a modified version of the algorithm of Bunch, Kaufmann and Parlett (1976); details
are given in Duff (2004). A threshold parameter u ∈ (0, 0.5] must be selected. Values
close to zero will generally result in a faster factorization with fewer entries in the factors
but values close to 0.5 are likely to result in a more stable factorization. Oblio follows
a similar approach to MA57. BCSLIB-EXT also uses 1 × 1 and 2 × 2 block pivots, again
with a threshold parameter under the user’s control. BCSLIB-EXT gives preference to 2×2
pivots; the algorithm is described in Ashcraft, Grimes and Lewis (1998). This paper also
proposed using k × k block pivots to improve performance but none of the solvers in our
study currently employs pivot blocks with k > 2. For the software developer, the main
disadvantage of including full 2× 2 pivoting is that it adds significantly to the complexity
of the code (particularly in a parallel implementation).

We note that, when solving indefinite problems, all the codes used in this study by
default select a tentative pivot sequence based upon the sparsity pattern alone (although
PARDISO optionally uses the numerical values). Then during the factorization they
either return an error message if the sequence cannot be used or modify it to allow the
factorization to continue. An alternative approach is to work on the actual numbers and
to combine the analyse and factorization phases. In such cases, the code is sometimes
described as an analyse-factorize code. The software library HSL includes the analyse-
factorize code MA67, which is primarily designed for the solution of symmetric indefinite
problems. The results of our earlier study (Gould and Scott, 2004) found that overall
MA67 was slower than the multifrontal code MA57, but MA67 was successful at solving some
“tough” (highly ill-conditioned and singular) indefinite problems that MA57 struggled on.
However, it is common to encounter the need to factorize and solve a sequence of sparse
linear systems where the coefficient matrices change but their sparsity pattern remains
fixed. A key advantage of designing a solver with separate analyse and factorize phases is
that the work of choosing a pivot sequence does not have to be repeated.

The pivoting strategies offered by the codes used in this study are summarised in
Table 2.2. Further details are given in Section 3. Although each of the codes may be used
to solve positive-definite problems, some have an option that allows the user to indicate
that the matrix is positive definite and, in this case, the code follows a logically simpler
path. A ‘

√
’ in the column headed ‘Positive definite’ indicates that the code either has such

an option or is designed principally for positive-definite systems. A ‘×’ in the ‘Indefinite’
column indicates that the documentation available with the code states it is designed for
solving positive definite problems and is thus not intended for indefinite examples. In our
numerical experiments, the latter codes will only be used to solve the positive definite
problems.
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Code Positive Indefinite
definite

BCSLIB-EXT
√

Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MA57
√

Numerical pivoting with 1 × 1 and 2 × 2 pivots.

MUMPS
√

Numerical pivoting with 1 × 1 pivots.

Oblio
√

Numerical pivoting with 1 × 1 and 2 × 2 pivots.

PARDISO
√

Supernode Bunch-Kaufmann within diagonal blocks.

SPOOLES
√

Fast Bunch-Parlett.

SPRSBLKLLT
√ ×

TAUCS
√ ×∗

UMFPACK × Partial pivoting with preference for diagonal pivots.

WSMP
√

No pivoting.

Table 2.2: Default pivoting strategies offered by the solvers used in our numerical
experiments. ∗ indicates numerical pivoting is to be included in a future release.

2.4 Out-of-core working

To solve very large problems using a direct solver it is usually necessary to work out-of-
core. By holding the matrix and/or its factor in files, the amount of main memory required
by the solver can be substantially reduced. In this study, only the solvers BCSLIB-EXT,
Oblio, and TAUCS include an option for holding the matrix factor out-of-core. Oblio also
allows the stack used in the multifrontal algorithm to be held in a file. BCSLIB-EXT is the
most flexible. It offers the option of holding the matrix data and/or the stack in direct
access files and, if a front is too large to reside in memory it is temporarily held in a direct
access file. In addition, information from the ordering and analyse phases may be held in
sequential access files. We anticipate that the facility for out-of-core working and out-of-
core storage of the matrix factor will allow the solution of problems that are too large for
the other codes to successfully solve with the memory available in our test environment.
The penalty of out-of-core working is possibly slower factorize and solve times because of
I/O overheads.

2.5 Other key features

We conclude this section by briefly highlighting some of the other key features of sparse
direct algorithms that are offered by some or all of the solvers in this study. All the
codes employ supernodal techniques that enable dense linear algebra routines to be used
to improve efficiency of the factorization phase. All the packages except SPOOLES use
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high level Basic Linear Algebra Subprograms (BLAS) (Dongarra, DuCroz, Duff and
Hammarling, 1990) and a number also employ LAPACK routines. Once the factors have
been computed, they may be used to solve repeatedly for different right-hand sides b.
Some codes offer the option of solving for more than one right-hand side at once because
this enables them to take advantage of Level 3 BLAS in the solve phase (see Table 2.3).

A number of codes offer options for automatically scaling the matrix and/or
automatically performing iterative refinement to improve the quality of the computed
solution and to help assess its accuracy (again, see Table 2.3).

Code Element Scaling Out-of Iterative Multiple Complex Hermitian
entry -core refinement rhs symmetric

BCSLIB-EXT × ×
√

×
√ √ √

MA57 ×
√

×
√ √ √

×
MUMPS

√ √
×

√
×

√
×

Oblio × ×
√ √ √ √

×
PARDISO × × ×

√ √ √ √

SPOOLES × × × ×
√ √ √

SPRSBLKLLT × × × ×
√

× ×
TAUCS × ×

√
× ×

√ √

UMFPACK ×
√

×
√

×
√ √

WSMP ×
√

×
√ √ √ √

Table 2.3: Summary of other key features of the sparse solvers used in this study.

When solving problems that arise from finite-element applications, it is often
convenient not to assemble the matrix A but to hold the matrix as a sum of element
matrices. The only code that allows A to be input in element form is MUMPS, although a
number of packages (in particular, BCSLIB-EXT) offer the user more than one input format
for the (assembled) matrix A.

A summary of the key features of the solvers in this study that have not already been
included in earlier tables is given in Table 2.3.

3 Sparse symmetric solvers used in this study

In this section, we give a very brief description of the software packages listed in Table 1.1.
We highlight some of the main features, with particular reference to the above introductory
discussion.

3.1 BCSLIB-EXT

BCSLIB-EXT is a library of mathematical software modules for solving large sparse linear
systems and large sparse eigenvalue problems. It includes multifrontal solvers that are
designed both for positive definite and indefinite symmetric systems.

When factorizing indefinite problems, the sequence may be modified and both 1 × 1
and 2×2 block pivots are used with a user-controlled threshold parameter u (with default
value 0.01). Modifying the pivot sequence may cause additional fill-in in the matrix
factor beyond that predicted by the analyse phase. BCSLIB-EXT allows the user to set a
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parameter that will cause the factorization to abort if this fill-in exceeds a prescribed level.
By default, the factorization also terminates if a zero pivot is encountered. Alternatively,
a parameter may be set to allow the package to perturb a (nearly) zero pivot and continue
the factorization. The user can also request that the computation terminates immediately
a negative pivot is found. The size of the blocks used by the Level 3 BLAS routine GEMM

during the factorization is controlled by parameters that may be reset by the user.

As already mentioned, a key feature of BCSLIB-EXT is its use of files to reduce the
amount of main memory required by the package. The user can choose to hold the original
matrix and/or the matrix factors in files. If there is not enough memory to hold the
multifrontal stack and the current frontal matrix, the code will store the stack out-of-core.
It will also perform an out-of-core frontal assembly and factorization step if the current
frontal matrix does not fit in memory. The user can choose a minimum core processing
option that forces out-of-core storage. In our tests, we provide the amount of storage
recommended in the documentation and provide positive stream numbers for each of the
files used by the code. In this case, if the amount of main storage we have provided is
insufficient, the code will use sequential files for holding information from the ordering and
analyse phases and may use one or more files during the factorization (and solve) phase.

3.2 MA57

MA57 is part of the mathematical software library HSL (2004) and was designed by Duff
(2004) to supersede the earlier well-known HSL multifrontal code MA27 (Duff and Reid,
1983) for the solution of symmetric indefinite systems. Our earlier study (Gould and
Scott, 2004) compared the performance of version 1.0.0 using an AMD ordering with that
of the nested dissection ordering from the METIS package. Our findings were that for very
large, positive-definite test problems (typically those of order > 50, 000), it is generally
advantageous to use the METIS ordering but for small and very sparse problems and also
for many indefinite problems, using an AMD ordering with quasi-dense row detection is
preferable. Based on our findings and experiments by, amongst others, Duff and Scott
(2005), MA57 has now been modified so that in the latest release (version 3.0.0) the default
is for the code to automatically select to use either the AMD ordering with dense row
detection or the METIS ordering based on the order of the system and characteristics of
the sparsity pattern; for some problems, it computes both orderings and chooses the one
with the smallest predicted level of fill.

During the factorization phase, when diagonal 1 × 1 pivots would be numerically
unstable, 2 × 2 diagonal blocks are used. Note that, for a given threshold parameter
u, the test for stability of 2 × 2 pivots is less severe than the test used in the earlier MA27
code (details are given by Duff, 2004). If the problem is known to be positive definite,
the user can set a control parameter that switches off threshold pivoting. In this case, if
a sign change or a zero is detected among the pivots, an error exit will optionally occur.
Alternatively, the user can choose to terminate the computation if any pivot is found to
be of modulus less than a user-defined value.

Parameters that are under the user’s control determine the size of the blocks used
by the Level 3 BLAS routines during the factorization and solve phases. The (optional)
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iterative refinement is based on the strategy of Arioli, Demmel and Duff (1989). Estimates
of the error are also optionally computed.

We have already observed that the default ordering in the version of the code used in
this study differs from the one used in our earlier study (Gould and Scott, 2004). Since
the earlier study there have been a number of other key changes to MA57. In particular,
by default the new version scales the matrix using a symmetrized version of the HSL code
MC64 (Duff and Koster, 1999). The aim is to put large entries on the diagonal so as to
restrict the number of pivots that are rejected for stability reasons during the factorization;
details are given in Duff and Pralet (2004). The matrix is explicitly scaled internally to
the package as are the right-hand side and the solution so that the user need not be
concerned with this. Iterative refinement, if requested, is based on the original unscaled
matrix. Static pivoting is now an option so that the factorization can be performed using
the storage predicted by the analysis phase even if the matrix is not positive definite.
Because static pivoting is not the default strategy, it is not used in our tests.

There is little difference between the speed of the Fortran 90 version of MA57 and the
Fortran 77 version, because the former is essentially a Fortran 90 encapsulation of the
latter. However, the Fortran 90 version does offer some additional facilities, and the user
interface is simplified through the use of dynamic storage allocation. In our numerical
experiments, the Fortran 77 version is used.

3.3 MUMPS

The MUMPS (MUltifrontal Massively Parallel Solver) package is designed and developed by
Amestoy, Duff, L’Excellent and Koster (2001) (see also Amestoy, Duff and L’Excellent,
2000). It is a multifrontal code primarily intended for unsymmetric systems and for
symmetric positive definite systems but it can also be used to solve many indefinite
problems. Both C and Fortran 90 interfaces to MUMPS are available; in our numerical
experiments, the Fortran 90 interface is used. MUMPS has been developed primarily as a
parallel solver (originally targeted at distributed memory computers); in this study we use
the sequential version.

MUMPS offers the user a wide range of options for choosing the pivot sequence (see
Table 2.1). These include a version of AMD with automatic quasi-dense row detection
and an approximate minimum fill-in algorithm. The multisection ordering is implemented
using the code PORD of Schulze (2001). By default, MUMPS automatically chooses the
ordering algorithm depending on the packages installed, the size of the matrix, and the
number of processors available. On a single processor, AMD is used for problems of size
n < 104 and METIS NodeND for larger problems.

As discussed in Section 2.3, when factorizing indefinite problems, MUMPS uses 1 × 1
pivots chosen from the diagonal. The factorization terminates with an error if at any
stage no numerically stable pivots are available on the diagonal. Because this may mean
some problems are not solved, at the authors’ suggestion, we run both the symmetric and
unsymmetric versions of MUMPS when testing indefinite examples.

Other features of the MUMPS package include facilities for use in domain decomposition,
error analysis, optional iterative refinement using the approach of Arioli et al. (1989), and
estimation of rank deficiency.
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3.4 Oblio

Oblio is a sparse symmetric direct solver library developed by Dobrian and Pothen as
an experimental tool (Dobrian, Kumfert and Pothen, 2000). Their goal was to create a
“laboratory for quickly prototyping new algorithmic innovations, and to provide efficient
software on serial and parallel platforms”. The code is written in C++ using object-
oriented techniques and is still being actively developed.

The most recent version (0.7) is able to solve both positive definite and indefinite
systems. For indefinite problems, the user is offered so-called static LDLT or dynamic
LDLT . In the former case, if a small pivot is encountered, it is perturbed to a value under
the user’s control, allowing the computation to continue. The default (which we use in our
tests) is dynamic LDLT . This employs a combination of 1 × 1 and 2 × 2 pivots. When a
diagonal 1 × 1 pivot would be unstable, a search is made for a suitable 2 × 2 pivot. Thus
searches for 1 × 1 and 2 × 2 pivots are interlaced.

For flexibility, Oblio implements three different sparse factorizations: left-looking,
right-looking and multifrontal. For 2-dimensional problems the multifrontal option is
recommended but for large 3-dimensional problems the user documentation reports the
multifrontal factorization can be outperformed by the other two algorithms. The default
algorithm is the multifrontal algorithm and this is used in our tests. The multifrontal
version includes an out-of-core option. This allows the matrix factor and/or the stack to
be held in files.

3.5 PARDISO

The PARDISO package of Schenk and Gärtner offers serial and parallel solvers for the
direct solution of unsymmetric and symmetric sparse linear systems on shared memory
multiprocessors. In this study, only the serial version for symmetric systems is used.
PARDISO employs a combination of left- and right-looking Level 3 BLAS supernode
techniques (Schenk et al., 2000, Schenk and Gärtner, 2004b) and is written using a
combination of Fortran 77 and C source code. PARDISO is included in Intel Math Kernel
Library (see www.intel.com/software/products/mkl/features/dss.htm).

The default ordering is a modified version of METIS; if the user does not wish to
use this ordering, a fill-reducing ordering may be input. The user must set a parameter
to indicate whether a Cholesky factorization or an LDLT factorization is required. For
indefinite problems, the current version includes Bunch-Kaufmann pivoting (Bunch and
Kaufmann, 1977) applied to the dense diagonal supernode blocks. A modified version of
the LAPACK routine dsytf2 is used for factorizing these blocks. Pivots that are zero (or
nearly zero) are perturbed so that pivots are not delayed beyond the current block. The
amount by which pivots are perturbed in this static pivoting strategy is determined by
a parameter under the user’s control. The current version includes an option to perform
preprocessing based on symmetric weighted matchings. The documentation states that
this is very robust but, because it incurs an overhead and involves the numerical values
of entries of the matrix (so that a new analyse may be required if the entries change,
even if the sparsity pattern is unaltered), it is not the default and is not used in this
study. Iterative refinement is offered, with the maximum number of steps controlled by a
parameter set by the user. In our tests the default value of 0 is used. This means that
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iterative refinement is only used if pivots have been perturbed during the factorization.
In this case, two steps of iterative refinement are performed.

We note that when calling PARDISO it is assumed that zero diagonal entries are stored
explicitly in the list of matrix entries. For many indefinite examples, one or more of the
diagonal entries is often not present within the sparsity pattern and the user must add
explicit zeros. PARDSIO also requires that the upper triangular part of the matrix is entered
by rows with the entries within each row ordered by increasing column index.

3.6 SPOOLES

SPOOLES is a library for solving sparse real and complex linear systems of equations, and
may be used for both symmetric and unsymmetric problems. The package is written in C
using an object-oriented design. Both serial and parallel versions are available. The serial
version for real symmetric systems is used in our tests.

SPOOLES uses the Crout reduction variant of Gaussian elimination, which is a left-
looking algorithm. In addition to MMD and generalized ND, the analyse phase offers a
multisection ordering algorithm (Ashcraft and Liu, 1998). The default is to use the better
of the nested dissection and multisection methods (although the user reference manual does
comment on situations where the user may find it beneficial to select another choice).

To try and ensure stability of the factorization for indefinite problems, the entries of
the triangular factor L are bounded by a user-supplied tolerance (in our tests we use the
recommended value of 100 for this tolerance). The fast Bunch-Parlett algorithm described
by Ashcraft et al. (1998) is used to choose 1 × 1 or 2 × 2 pivot blocks. SPOOLES is the
only package tested that does not use the high level BLAS kernels; instead it performs
operations within the factorization phase using multiple dot products.

We note that SPOOLES requires that the sparsity pattern of the input matrix includes
the diagonal. For many indefinite examples, one or more of the diagonal entries is often
not present within the sparsity pattern. In such cases, the user must include an explicit
zero.

3.7 SPRSBLKLLT

SPRSBLKLLT was developed by Esmond Ng and Barry Peyton at Oak Ridge
National Laboratory in the early 1990s for the solution of sparse symmetric positive
definite systems. The pivot sequence is selected using the MMD algorithm; the
implementation used is taken from the Waterloo sparse matrix package SPARSPAK

(see sparse.uwaterloo.ca/∼jageorge/Sparspak/sparspak.html). The symbolic
factorization subroutines are independent of any ordering algorithms.

SPRSBLKLLT implements a supernodal left-looking Cholesky factorization algorithm
(details are given in Ng and Peyton, 1993). The symbolic factorization algorithm uses
the results of Gilbert, Ng and Peyton (1994), which allow storage requirements to be
determined in advance, regardless of the ordering strategy used. The performance of the
package has been enhanced since it was first released by exploiting the memory hierarchy:
it splits supernodes into sub-blocks that fit into the available cache; and it unrolls the
outer loop of matrix-vector products in order to make better use of available registers. A
parameter that must be set by the user determines the maximum supernode size. The
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storage requirements depend on this parameter (large values increase the storage). Based
on the limited documentation provided with the code, in our tests this parameter is set
to 100.

3.8 TAUCS

TAUCS has been developed since 2001 by Sivan Toledo’s research group in the Department
of Computer Science at Tel-Aviv University as a platform for research on sparse linear
solvers. TAUCS is designed to support the development of research codes by providing
a library of fundamental algorithms and services, and to facilitate the maintenance and
distribution of the resulting research codes. Toledo and his colleagues are still developing
the package; a version for indefinite problems will be available in the future. TAUCS is
currently used in Mathematica 5.

Both a multifrontal algorithm and a left-looking algorithm are implemented; the
documentation states the latter is slower than the former but requires less memory. As well
as MD, AMD, MMD, and METIS NodeND, a no-fill ordering code for matrices whose graphs
are trees is available. This is a special case of MD but is faster. METIS is recommended
for large problems and was used in our tests. The current version of TAUCS is designed
for positive definite symmetric problems and so numerical pivoting is not incorporated
(although the package does include a general sparse LU factorization code with partial
pivoting). An option exists to compute an incomplete LLT factorization.

TAUCS is able to factorize a matrix whose factor is larger than the main memory by
holding the factor out-of-core. The factor is held in multiple files, each at most 1 Gbyte
in size (see Rotkin and Toledo, 2004 for details).

3.9 UMFPACK

The principal author of the sparse direct solver UMFPACK is Tim Davis of the University of
Florida (Davis, 2003a, 2003b). The tested version (version 4.1) is written in C; the original
code was developed by Davis and Duff in Fortran 77 (Davis and Duff, 1993). It is the
only code included in this study that is primarily written for unsymmetric matrices, that
is, it is the only code that requires the sparsity pattern of the whole matrix A. However,
for symmetrically (or nearly symmetrically) structured matrices it offers a symmetric
pivoting strategy and for this reason we have included it in this study. This also serves as
a benchmark to illustrate how symmetric solvers compare to a state of the art unsymmetric
package.

UMFPACK combines a column ordering strategy with a right-looking unsymmetric-
pattern multifrontal numerical factorization. All pivots with zero Markowitz cost are
eliminated first and placed in the LU factors. The analyse phase then automatically
selects one of three ordering and pivoting strategies (unsymmetric, 2-by-2, and symmetric).
For symmetric matrices with a zero-free diagonal, the symmetric strategy is used. This
computes a column ordering using AMD. No modification of the column ordering is made
during the numerical factorization. A nonzero diagonal entry is selected as a suitable
pivot if in magnitude it is at least u1 times the largest entry in its column. Otherwise,
an off-diagonal pivot is selected with magnitude at least u2 times the largest entry in its
column. u1 and u2 are parameters under the user’s control with default values of 0.001
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and 0.1, respectively. Thus strong preference is given to pivoting on diagonal entries. For
symmetric indefinite problems with zeros on the diagonal, the so-called 2-by-2 strategy is
attempted. This looks for a row permutation that puts nonzero entries onto the diagonal.
The symmetric strategy is applied to the permuted matrix.

MATLAB, C and Fortran interfaces to the present version (4.1) are offered. An earlier
version (4.0) appears as a built-in routine in MATLAB 6.5 and Mathematica 5. Version
2.2.1 by Davis and Duff is available as routine MA38 within the software library HSL.
Versions prior to 4.1 only offer the unsymmetric pivoting strategy and are thus not well
suited for matrices with a symmetric nonzero pattern.

3.10 WSMP

The Watson Sparse Matrix Package (WSMP) was developed by Anshul Gupta of the IBM
T. J. Watson Research Center. The package is written using Fortran 90 and C and
includes direct solvers for both symmetric and unsymmetric systems. WSMP was primarily
developed as a highly scalable parallel code that can be used in either a shared-memory
multiprocessor or a message-passing environment. A serial version is available and is used
in this study.

The analyse phase offers a minimum local fill ordering and an ordering based on
recursive bisection. By default, both orderings are computed and the one that will result
in the least fill-in is selected. The factorization phase implements a modified multifrontal
algorithm. It is primarily designed for positive-definite systems but may be used for
solving quasi-definite (Vanderbei, 1995) and indefinite problems provided the numerical
factorization is stable irrespective of the pivot sequence. By default (and in our tests),
if a zero (or very small) pivot is encountered, the factorization terminates with an error
message. Alternatively, the user can request that near zero pivots are perturbed to allow
the factorization to continue. The user must set a parameter to indicate whether an LLT

or LDLT factorization is to be performed. A routine may be called to perform iterative
refinement, with an option of using extended precision arithmetic.

WSMP requires that the sparsity pattern of the input matrix includes the diagonal. If
one or more of the diagonal entries is not present, the user must add an explicit zero.

Further details of WSMP are given in Gupta, Karypis and Kumar (1997) and Gupta,
Joshi and Kumar (2001). Currently, WSMP is available for use on AIX, SunOS, Tru64, and
Linux platforms. Although WSMP libraries contain multithreaded code, the libraries are
not thread-safe.

4 The test environment

4.1 The test set

Our aim in this study is to test the solvers on a wide range of test problems from as
many different application areas as possible. In collecting test data we imposed only two
conditions:

• The matrix must be of order greater than 10, 000.
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• The data must be available to other users.

The first condition was imposed because our interest in this study is in large problems.
The second condition was to ensure that our tests could be repeated by other users and,
furthermore, it enables other software developers to test their codes on the same set of
examples and thus to make comparisons with other solvers. Provided the above conditions
are satisfied, we have included all square real symmetric matrices of order exceeding 10, 000
that were available in June 2003 in the Matrix Market (math.nist.gov/MatrixMarket/),
the Harwell-Boeing Collection (Duff, Grimes and Lewis, 1989), and the University of
Florida Sparse Matrix Collection (www.cise.ufl.edu/research/sparse/matrices), as well as
a number of problems that were supplied to us by colleagues. The test set comprises
88 positive-definite problems and 61 numerically indefinite problems. We note that
some of the indefinite problems are highly ill-conditioned and 5 are structurally singular.
Of these matrices, those of order 50,000 or more are further classed as being in the
subset of larger examples (there are 43 positive-definite and 30 indefinite examples in
this category). Any matrix for which we only have the sparsity pattern available
is included in the positive-definite set, and appropriate numerical values have been
generated (see Section 4.6). Application areas represented by our test set include
linear programming, structural engineering, computational fluid dynamics, acoustics, and
financial modelling. A full list of the test problems together with a brief description
of each is given in Gould, Hu and Scott (2005). The problems are all available
from ftp://ftp.numerical.rl.ac.uk/pub/matrices/symmetric (and are also now part of the
University of Florida Sparse Matrix Collection).

4.2 The performance profile

Benchmark results are generated by running a solver on a set T of problems and recording
information of interest such as the computing time and memory used. In this study, we
use a performance profile as a means to evaluate and compare the performance of the
solvers on our test set T .

Let S represent the set of solvers that we wish to compare. Suppose that a given solver
i ∈ S reports a statistic sij ≥ 0 when run on example j from the test set T , and that the
smaller this statistic the better the solver is considered to be. For example, sij might be
the CPU time required to solve problem j using solver i. For all problems j ∈ T , we want
to compare the performance of solver i with the performance of the best solver in the set
S.

For j ∈ T , let ŝj = min{sij; i ∈ S}. Then for α ≥ 1 and each i ∈ S we define

k(sij , ŝj, α) =

{

1 if sij ≤ αŝj

0 otherwise.

The performance profile (see Dolan and Moré, 2002) of solver i is then given by the function

pi(α) =

∑

j∈T k(sij , ŝj , α)

|T | , α ≥ 1.
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Thus pi(1) gives the fraction of the examples for which solver i is the most effective
(according to the statistic sij), pi(2) gives the fraction for which it is within a factor of 2
of the best, and limα−→∞ pi(α) gives the fraction for which the algorithm succeeded.

In this study, the statistics used are:

• The CPU times required to perform the analyse, factorize, and solve phases.

• The number of nonzero entries in the matrix factor.

• The total memory used by the solver.

4.3 Computing platform

The numerical results were all obtained on a Compaq DS20 Alpha server with a pair of
EV6 CPUs; in our experiments only a single processor with 3.6 Gbytes of RAM was used.
We compiled the codes with full optimisation; the vendor-supplied BLAS were used where
applicable. All CPU reported times are in seconds and, where appropriate, include all I/O
costs involved in holding the factors in direct-access files. A CPU limit of 30 minutes was
imposed for each code on each problem; any code that had not completed after this time
was recorded as having failed.

In all the experiments, double precision reals were used. Thus storage for a real
was 8 bytes and for an integer was 4 bytes. Memory is measured using the C utility
function getrusage. In particular, the maximum resident set size of the current process
is measured. Extra memory required for setting up the test is subtracted.

4.4 Control parameters

Each of the sparse solvers used in our numerical experiments has a number of parameters
that control the action. These are either assigned default values through a call to
an initialisation subroutine or the values recommended in the user documentation are
used. Unless otherwise stated, we use these defaults in each case, even if different codes
sometimes choose a different value for essentially the same parameter. The main exception
is the stability threshold parameter u (see Section 2.3). We remark that we decided early
on in this study not to try and fine tune the input parameters for each solver on each
problem. In some cases, performance would have been improved by tweaking. However,
we felt that to do this for each individual code and all the problems in the test set would
be an almost impossible task and, more importantly, our aim is to compare the codes
from a common standpoint, that is, using the control settings chosen by the authors of
the packages. Our experience is that many users (in particular, those who would regard
themselves as non-experts) rely on the default settings and are reluctant to try other values
(possibly because they do not feel confident about making other choices).

When testing the solvers on positive-definite problems the threshold parameter u is
set to zero. This results in no numerical pivoting being performed. For our tests on
numerically indefinite problems, for the codes that employ a stability threshold parameter,
we run both with the code’s default u value and with u set to 10−10. Such a value
is frequently used in optimization applications (Saunders, 1994, Gould and Toint, 2002),
where speed is of the essence, and any instability is countered either by iterative refinement
or ultimately by refactorization with a larger value of u.
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MA57, MUMPS and BCSLIB-EXT use a default threshold u = 0.01, while UMFPACK has two
threshold parameters with default values of 0.001 and 0.1 (see Section 3.9). When testing
with a small threshold, both UMFPACK parameters are set to 10−10.

4.5 Out-of-core working

Out-of-core options are offered by the packages BCSLIB-EXT, Oblio and TAUCS. In our
tests, the out-of-core facilities are only used if this is the default. For Oblio and
TAUCS, the user must decide explicitly if the out-of-core option is required. By default,
BCSLIB-EXT switches automatically to out-of-core working if it finds that the user has
provided insufficient workspace for the code to run in-core (see Section 3.1). We therefore
anticipate that out-of-core working will be used by BCSLIB-EXT for some of our largest
test examples.

4.6 Numerical values and scaling

Some of our test examples are not supplied with numerical values (only the sparsity pattern
is available). For these cases, appropriate numerical values are generated. Reproducible
pseudo-random off-diagonal entries in the range (0, 1) are generated using the HSL routine
FA14, while the i-th diagonal entry is set to max(100, 10ρi), where ρi is the number of
off-diagonal entries in row i of the matrix, thus ensuring that the generated matrix is
numerically positive definite.

In all our tests, right-hand side vectors b are computed so that the exact solution x (of

the unscaled system) is x = e
def
= (1, 1, ..., 1)T .

If the input matrix has entries differing widely in magnitude, then an inaccurate
solution may be obtained in the indefinite case and the accuracy may be difficult to
assess in all cases. A number of the packages tested include an option for scaling the input
matrix. We do not use these options unless scaling is performed by default (this is the
case for MA57 and UMFPACK). To examine the effects of scaling on the codes that do not
perform scaling by default, for each value of the threshold parameter u used, we run both
with and without scaling of the matrix A and the corresponding right-hand side b using
the HSL scaling routine MC30. For our positive-definite problems, scaling was found to
make an insignificant difference and hence we report on the effects of scaling only for the
indefinite examples.

4.7 Residuals and iterative refinement

A number of the solvers include routines for automatically performing iterative refinement.
Unless the solver’s default is to perform iterative refinement, we have not used these
routines in this study (by default for indefinite problems PARDISO performs up to two
steps of iterative refinement). Instead, once we have computed the approximate solution
x, we perform one step of iterative refinement by computing the residual r = Ax − b and
then recalling the solve routine to solve Aδx = r for the correction δx.

For each right-hand side b and corresponding solution x, we compute the scaled residual

‖b − Ax‖∞/(‖A‖∞‖x‖∞ + ‖b‖∞)
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A check is made after one step of iterative refinement that this residual is sufficiently small
(in our tests, a residual greater than 0.0001 causes an error message to be returned). Note
that the residual of the unscaled system is computed.

For nonsingular A, we also check the accuracy of the computed solution. Some of the
systems are highly ill-conditioned and for these the norm of the error x − e was large for
some solvers. A positive warning flag is set in this case, but we do not count this as a
failure provided the scaled residual is small.

5 Results

Since some of the solvers we are examining are specifically designed for positive-definite
problems (and may be unreliable, or even fail, on indefinite ones), we will discuss the
positive-definite and indefinite cases separately. Moreover, as the competing algorithms
have different design goals, we consider it worth examining each of the solution phases
(analyse, factorize, solve) both separately and ultimately together.

Full details of the statistics generated by each solver are given in an accompanying
technical report (Gould et al., 2005).

5.1 Positive-definite examples

Overall the reliability of the solvers for positive-definite examples was excellent. All failed
to solve the problem audikw 1 because of a lack of space required to hold its factors1, but
for the majority this was the only failure. UMFPACK was the solver with the largest number
of failures, caused either by the CPU time limit being exceeded or by a lack of space.
This is the only solver for which extra precautions must be taken to guarantee stability,
because it permits off-diagonal pivoting.

We first present the performance profile for the analyse time for the ten solvers in
Figure 5.1.1 . It is immediately apparent that the solvers that use (or select) variants
of the minimum-degree strategy (SPRSBLKLLT, UMFPACK and MA57) have a faster ordering
than those that employ a dissection-based strategy. Furthermore, there is little to choose
between the speed at which the variants of the latter orderings are computed. The most
expensive strategies are those employed by SPOOLES and WSMP, both of which compute two
orderings and the select the best.

When it comes to the factorization, we see in Figure 5.1.2 that the careful analysis
strategy adopted by WSMP pays off. Over the complete set of positive definite examples,
the other codes (with the exception of UMFPACK and SPOOLES) are broadly comparable.
Interestingly, the differences between left/right-looking and multifrontal factorizations do
not seem as significant as we had anticipated might be the case. UMFPACK is slower because
it is essentially an unsymmetric solver and we believe that SPOOLES is not competitive
because it does not use high level BLAS. We also see in Figure 5.1.3 that, in our computing
environment, the fastest factorization is generally closely tied to the number of nonzeros
in the generated factors—note here that this statistic was not available for BCSLIB-EXT.

1In the case of BCSLIB-EXT, which permits out-of-core factorization, the run was terminated through
excessive CPU time. However, subsequent experiments showed that BCSLIB-EXT was able to solve the
problem if sufficient time (roughly 2.5 CPU hours) was allowed.
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Performance Profile: 0.Analyse.CPU − 88 positive−definite problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.1: Performance profile, p(α): CPU time for the analyze phase (positive-definite
problems).
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Performance Profile: 0.Factorise.CPU − 88 positive−definite problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.2: Performance profile, p(α): CPU time for the factorization phase (positive-
definite problems).
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Performance Profile: 0.Real.factor − 88 positive−definite problems, u=default

MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.3: Performance profile, p(α): Number of entries in the factors (positive-definite
problems).

The unsymmetric solver UMFPACK does not appear to be competitive in the symmetric
case, and this agrees with our observations in our earlier paper (Gould and Scott, 2004)
concerning the unsymmetric HSL code MA48.

Having computed the factors, the performance profiles for solving for a single right-
hand side are illustrated in Figure 5.1.4. Here there is a reasonable correlation between
sparsity in the factors and time taken, with PARDISO, BCSLIB-EXT, and MA57 generally the
faster codes. The only slight surprise is that, although WSMP produces the sparsest factors,
its solve time is solver than most of the other codes.

In Figure 5.1.5 we present the performance profile for the CPU time for a single solution
(that is, the CPU time for analysing, factorizing and solving for a single right-hand side)
for the ten solvers under consideration. As one might expect, there is little to choose
between the best solvers, since most use broadly similar orderings and there is no need for
numerical pivoting. PARDISO and MA57 appear to perform marginally better than the rest,
but SPRSBLKLLT, TAUCS, OBLIO, MUMPS, and BCSLIB-EXT are all close. The slow analyse and
solve times clearly affect WSMP. Only SPOOLES and UMFPACK do appear uncompetitive. For
the subset of larger problems, Figure 5.1.6 reinforces this trend, with all the codes apart
from SPOOLES and UMFPACK being within a factor of 2 of the fastest code on approximately
80 per cent of the large test problems.

In Figure 5.1.7 we also compare the total memory used. We had expected that the
multifrontal solvers would require significantly more memory than the other codes but our
results suggest that there is generally little to distinguish between any of the symmetric
solvers from this perspective, with perhaps a slight edge for PARDISO.
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Performance Profile: 0.Solve.CPU − 88 positive−definite problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.4: Performance profile, p(α): CPU time for the solution phase (positive-definite
problems).
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Performance Profile: 0.AFS.CPU − 88 positive−definite problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.5: Performance profile, p(α): CPU time for the complete solution (positive-
definite problems).
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Performance Profile: 0.AFS.CPU − 43 positive−definite large−subset problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (1 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (1 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.6: Performance profile, p(α): CPU time for the complete solution (large
positive-definite subset problems).
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Performance Profile: 0.Memory − 88 positive−definite problems, u=default

BCSLIB−EXT (1 failed)
MA57 (1 failed)
MUMPS (1 failed)
Oblio (2 failed)
PARDISO (1 failed)
SPOOLES (2 failed)
SPRSBLKLLT (1 failed)
TAUCS (2 failed)
UMFPACK (4 failed)
WSMP (1 failed)

Figure 5.1.7: Performance profile, p(α): Memory used (positive-definite problems).
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5.2 Indefinite examples

We now turn to indefinite problems, for which numerical pivoting is important. We need to
assess the effects of the different ordering and pivoting strategies. Note that SPRSBLKLLT
and TAUCS were not designed for indefinite problems and thus are omitted from these tests.
Moreover, as discussed in Section 2.3, many of the other solvers only offer limited forms
of pivoting, and thus give no stability guarantees. At its authors’ suggestion, we include
results for both the symmetric (here denoted by MUMPS) and unsymmetric (MUMPS US)
versions of MUMPS (note that the unsymmetric version includes off-diagonal pivoting).

Although, in our companion paper (Gould et al., 2005), we report on the results of
four different pre-scaling/pivoting strategies, here we largely restrict our attention to the
default strategy. The first thing to note is that the general reliability on indefinite problems
is far below that for the definite case. Indeed, only three of the solvers (MA57, PARDISO
and UMFPACK) had a success rate of 90% or better, while some of the others failed on 25%
or more of the problems—admittedly some of the latter issued strong warnings in their
documentation about possible limitations (including not being able to factorize singular
systems and not performing numerical pivoting). All the solvers failed on the problem
SPARSINE because of a lack of space or they exceeded our CPU limit.

We start by presenting in Figure 5.2.1 the performance profile for the analyse times.
The conclusions are broadly as for the definite case, with those solvers that use (or select)
variants of the minimum-degree strategy being faster than those opting for dissection
orderings.
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Performance Profile: 1.Analyse.CPU − 61 indefinite problems

BCSEXT−LIB (15 failed)
MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.1: Performance profile, p(α): CPU time for the analyze phase (indefinite
problems).

Now examining the factorize times (see Figure 5.2.2), we see a significant gap between
PARDISO and the remaining solvers. Recall that PARDISO employs static pivoting and



24 A numerical evaluation of sparse solvers for symmetric systems

p(α)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

fra
ct

io
n 

of
 p

ro
bl

em
s 

fo
r w

hi
ch

 s
ol

ve
r w

ith
in

 α
 o

f b
es

t

Performance Profile: 1.Factorise.CPU − 61 indefinite problems

BCSEXT−LIB (15 failed)
MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.2: Performance profile, p(α): CPU time for the factorization phase (indefinite
problems).

thus does not need to alter the ordering suggested by the analyse phase to complete its
factorization. One might anticipate a lack of robustness with such an approach; what
we find is that, by using the default iterative refinement, all the problems pass our
residual test (see Section 4.7), but for a small number of problems (notably crystk02 and
crystk03) the scaled residuals are significantly larger than those obtained using other
solvers. Interestingly, the gap in performance is less pronounced when comparing the
numbers of entries in the factors (see Figure 5.2.3), with MA57 the runner up—again the
statistics for BCSLIB-EXT are not available. As one might predict, Figure 5.2.4 indicates
a high correlation between the total memory used and the numbers of nonzeros in the
factors (see Figure 5.2.3), with PARDISO requiring the least memory, followed by MA57 well
above the rest.

Of course, there is some penalty to be paid for using a potentially less stable
factorization, and that is that iterative refinement is a necessary precaution when using
the generated factors to solve Ax = b. This is apparent in Figure 5.2.5. Now MA57 is a
clear winner (with BCSLIB-EXT also performing well on the problems it solved within the
CPU time limit), while PARDISO, which performs iterative refinement when pivots have
been perturbed, is slower. A closer investigation of the detailed results show that, if pivots
have been perturbed during the PARDISO factorization, the corresponding solve can be up
to three times slower than the comparable MA57 solve precisely because of the possible two
extra “refinement” steps taken.

If a complete solution (analyse-factorize-solve) is the primary concern, Figure 5.2.6
indicates a clear preference for MA57 and PARDISO. In terms of CPU time, there is little
to choose between the two. Of the remaining solvers, BCSLIB-EXT and the two variants of
MUMPS perform best, with the unsymmetric version of MUMPS proving more reliable than the
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Performance Profile: 1.Real.factor − 61 indefinite problems

MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.3: Performance profile, p(α): Number of entries in the factors (indefinite
problems).
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Performance Profile: 1.Memory − 61 indefinite problems

BCSEXT−LIB (15 failed)
MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.4: Performance profile, p(α): Memory used (indefinite problems).
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Performance Profile: 1.Solve.CPU − 61 indefinite problems

BCSEXT−LIB (15 failed)
MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.5: Performance profile, p(α): CPU time for the solution phase (indefinite
problems).
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Performance Profile: 1.AFS.CPU − 61 indefinite problems

BCSEXT−LIB (15 failed)
MA57 (1 failed)
MUMPS (16 failed)
MUMPS−unsym (8 failed)
Oblio (8 failed)
PARDISO (1 failed)
SPOOLES (15 failed)
UMFPACK (5 failed)
WSMP (31 failed)

Figure 5.2.6: Performance profile, p(α): CPU time for the complete solution (indefinite
problems).
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Performance Profile: 1.AFS.CPU − 30 indefinite large−subset problems

BCSEXT−LIB (9 failed)
MA57 (1 failed)
MUMPS (9 failed)
MUMPS−unsym (4 failed)
Oblio (6 failed)
PARDISO (1 failed)
SPOOLES (8 failed)
UMFPACK (5 failed)
WSMP (13 failed)

Figure 5.2.7: Performance profile, p(α): CPU time for the complete solution (large
indefinite subset problems).

symmetric version because it incorporates off-diagonal pivoting. This trend is reinforced
when the subset of larger problems is considered (see Figure 5.2.7).

We also investigated using a small stability threshold parameter (see § 4.4). In some
cases, this improved the quality of the factorization (reduced both the CPU time and
numbers of nonzeros in the factors), but at the cost of lower overall reliability for some
solvers (for example, without employing iterative refinement, MA57 did not solve three
additional problems with the required accuracy and for UMFPACK a further twelve failures
occurred). But for other solvers (BCSLIB-EXT) and MUMPS) there were fewer failures overall
either because, with the smaller threshold, the solver completed within our time limit or
because less space was required because of fewer delayed pivots. Using external scaling
(see § 4.6) did not appear to offer a significant or consistent advantage.

6 Concluding remarks

In this paper, we have compared a number of currently-available software packages for the
direct solution of real symmetric sparse linear systems of equations. Although there are
detailed differences, all the methods we have considered broadly comprise three phases:
an analysis of the sparsity pattern with a view to reordering the variables to reduce fill-in,
a (static or dynamic) factorization of the reordered matrix, and a solution of the given
system using forward- and back-substitution. The interaction between all three phases
is crucial for a reliable and fast solution. Thus although minimum-degree-based analysis
phases generally appear to be faster than dissection-based ones, for are test problems the
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resulting factors are generally less sparse which (negatively) influences the speed of both
the subsequent factorization and solve phases.

For positive-definite systems, we find in general that there is little in terms of reliability
and efficiency to distinguish between the leading competitors (BCSLIB-EXT, MA57, MUMPS,
Oblio, PARDISO, SPRSBLKLLT, TAUCS and WSMP). Nevertheless, if many factorizations of
matrices with identical sparsity patterns but differing values are required, WSMP and
PARDISO are the strongest candidates, while if many solutions for a given matrix are
needed BCSLIB-EXT, MA57 and PARDISO can be recommended. For indefinite problems,
there are no strong stability guarantees without pivoting, and this is reinforced by the
high percentage of failures for some algorithms in this case. The leading contenders here
are MA57 and PARDISO. The former is more cautious with its factorization phase (and
consequently the latter is faster), but such caution pays off in a faster solution phase as
there is less need to resort to iterative refinement to correct for poor residuals. Both
of these codes are being actively developed; indeed, both codes have been significantly
improved since we started work on this study, partly as a result of feedback from us.
The careful use of static pivoting within PARDISO (see Schenk and Gärtner, 2004a) is
surprisingly effective and currently under investigation by the authors of other packages
(see, for example, Duff and Pralet, 2005).

As we discussed in Section 4.4, we have limited our experiments to running each of the
packages with its default (or recommended) settings. Clearly, for many problems it may
be possible to get an individual code to run faster and produce sparser factors by tuning
the control parameters to the problem (indeed, a particular parameter choice may enable
a code to succeed where we report a failure). From the brief descriptions of the codes
and their key features given in Sections 2 and 3, it should be apparent that some of the
codes offer the user a large number of parameters that can be used to tune the code for
particular applications. Notable examples are BCSLIB-EXT and MA57. In addition, Oblio
offers the user the possibility of trying different factorization algorithms.

A further limitation of this study is that all our experiments were performed using a
single computing platform. Although our main concern is how the codes perform relative
to each other rather than individual CPU timings, clearly there could be some variation in
performance on different computing platforms. Of course, some of our reported statistics
such as the number of entries in the factors and memory usage are independent of the
platform.

We readily concede that this paper is merely a snap-shot of an evolving field, and that
perhaps a different picture will emerge in the not-too-distant future. Nevertheless, since
the solution of linear systems is a vital component in many areas of scientific computation,
we believe that our paper will be useful to both software developers and (potential) users
as a guide to current state-of-the-art of sparse direct solvers.
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